

UnderstandingUnbrako

technical brochure

UNBRAKO is the world's largest manufacturer of Precision Mechanical Fasteners and has earned a reputation for quality and performance in the production of Hexagon Socket Screws (and Allied Products), Aerospace and Automotive Fasteners. Special Hot and Cold Forged Components as well as significant business in Speciality and Exotic Alloy materials and magnetic products.

UNBRAKO employs over 4,000 people in 5 manufacturing plants and sales offices in 6 countries spread over 4 continents.

Since its founding in 1903, **UNBRAKO** has sought opportunities for growth through product innovation and technological advances. In pioneering work in metallurgy, testing, design and metal working, the company continues to develop unique capabilities for solving its customers industrial problems.

UNBRAKO is involved with quality control at its specialist steel suppliers, enabling **UNBRAKO** to control the production of high grade alloy steels with metallurgical and chemical characteristics specifically to suit **UNBRAKO** Fasteners. It also allows complete control of material from original steel melt to finished product ensuring ultimate fastener reliability.

UNBRAKO In addition to the well known hexagon socket product range (detailed in this catalogue), **UNBRAKO** also manufacturers a wide range of custom designed fasteners for aerospace and other demanding applications. The wide range of Hexagon Wrenches and Wrench Sets are also available.

UNBRAKO standard fasteners-"The widest range in the world" are available from Distributors who have the support of trained sales and application engineers who will solve fastening problems in all types of industrial environments. If necessary **UNBRAKO** will design and develop fasteners to suit the specific requirements of any application.

CONTENTS

Quick Selector Guide	2 & 3
Socket Head Cap Screws	
Introduction	4
Product Features	5
Applications	6
ISO Metric Threads	
- Dimensions & Tightening Torques	7
- Body and Grip length	8 & 9
- Micro Screw	10
- Low Head	11
1936 Series B BA BSW & BSF Threads	
- Dimensions & Tightening Torques	12
- Grip Lengths	14 & 15
1936 Series UNC & UNF Threads	
- Dimensions & Tightening Torques	13
- Grip Lengths	16 & 17
1960 Series UNC & UNF Threads	
- Dimensions & Tightening Torques	18
- Grip Lengths	16
Counter sunk Soc ket Head Screws	10
Description	19
ISO Metric Threads	19
- Dimensions & Tightening Torques	20
- Body & Grip Lengths	22 & 23
BA BSW & BSF Threads	22 Q 23
- Dimensions & Tightening Torques	21
- Body & Grip Lengths	24
UNC & UNF Threads	24
- Dimensions & Tightening Torques	25
- Body & Grip Lengths	26
, , ,	20
Button Head Socket Screws	
Description	27
ISO Metric Dimensions	28
BS, BSW and BSF Dimensions	29
UNC & UNF Dimensions	30
Flange Button Head Socket Screws	31
ISO Metric Dimensions	32
Socket Set Screws	00
Description Point Style	33
Point Style ISO Metric Threads	41
- Dimensions & Tightening Torques	24 9 25
- Torsional Holding Power	34 & 35 38 & 39
- Microsize	30 & 39 40
UNC, UNF, BA, BSW, & BSF Threads	
- Dimensions & Tightening Torques	36 & 37
- Torsional Holding Power	38 & 39
Socket Shoulder Screws	00 Q 03
Applications	42
Description	43
ISO Metric Dimensions	44
UNC, UNF, BSW & BSF Dimensions	45
Due to a continuous policy of research and development Unbrake reserve the	

Due to a continuous policy of research and development Unbrako reserve the right to alter the specification of any product without prior notice.

Performance data listed is for standard production items only. Non stock items may vary due to variables in methods of manufacture. It is recommended that the user verify performance on any non-standard parts for critical applications.

QUICK SELECTION GUIDE

Туре	Application	Features
Socket Head Cap Screws Alloy Steel Stainless Steel		Suitable for all high tensile applications. Use stainless for corrosive-cryogenic or elevated temperatures.
Socket Low Head Cap Screw Alloy Steel		Suitable for use in parts too thin for std. SHCS; and for applications with limited clearances.
Countersunk Socket Head Screws Alloy Steel Stainless Steel		Controlled angle under the head ensures maximum flushness and sidewall contact. Non-slip Hex socket prevents marring of material. Note: Inclined angle under the head varies as follows: BSW & BSF Threads - 90°C UNC & UNF Threads - 82°C Metric Threads - 90°C Above M20 - 60°C
Alloy Steel Stainless Steel		Low heads streamline design. Use them in materials too thin to countersink: also for non-critical loading requiring heat treated screws.
Flange Button Head Scre ws Alloy Steel		Allows covering of large diameter holes in sheet metal. Can be used with softer materials.
Shoulder Screws Alloy Steel		Replaces costly special parts - shafts, pivots, pins, guides, linkages and trunnion mountings. Also standard for tool and die industries.
Socket Set Screws		Fasten collars, sleeves, gears, knobs on shafts. Locate machine parts
Alloy Steel Stainless Steel		Cone, half dog, oval, cup and self locking knurled cup points are standard.

QUICK SELECTION GUIDE

Maximum Operating Temperature Unplated	Material	Corrosion Resistance	Magnetic or Non-Magnetic	Page
300°C	High Grade Unbrako Alloy Steel	Plating Optional	Magnetic	4 to 18
430°C	Austenitic Stainless Steel	Excellent	Non-Magnetic	4 10 16
300°C	High Grade Unbrako Alloy Steel	Plating Optional	Magnetic	11
300°C	High Grade Unbrako Alloy Steel	Plating Optional	Magnetic	19 to 26
430°C	Austenitic Stainless Steel	Excellent	Non-Magnetic	19 10 26
300°C	High Grade Unbrako Alloy Steel	Plating Optional	Magnetic	27 to 30
430°C	Austenitic Stainless Steel	Excellent	Non-Magnetic	27 10 30
300°C	High Grade Unbrako Alloy Steel	Plating Optional	Magnetic	31 to 32
300°C	High Grade Unbrako Alloy Steel	Fair	Magnetic	41 to 44
300°C	High Grade Unbrako Alloy Steel	Plating Optional	Magnetic	31 to 39
430°C	Austenitic Stainless Steel	Excellent	Non-Magnetic	31 10 39

If you use fasteners, you know their importance in today's technology. Higher pressures, higher stresses and higher speeds demand stronger, more reliable joints, and stronger, more reliable fasteners to hold them together. Parts must stay together. A single failure can destroy valuable equipment or stop an assembly line. Reliability must be total.

This is why industry is using more and more socket head cap screws, the strongest threaded fasteners you buy "off the shelf". They have the extra strength and fatigue resistance required for total reliability in high strength fastening.

Tensile and Fatigue Strength

Unbrako socket head cap screws have the highest levels of strength and fatigue resistance in the industry. They exceed all government and industry standards. Instead of the usual range of 1220 N/mm², minimum tensile strength levels of Unbrako cap screws are consistently 1300 N/mm². At the same time ductility and fatigue resistance are not sacrificed.

When you buy tension fasteners (which is what socket head cap screws basically are) you're buying clamping force - the ability to hold things together. The additional strength offered by Unbrako screws can save pounds, if you use the screws correctly.

The extra strength of Unbrako screws allows the use of either fewer fasteners of the same size, or the same number of smaller screws to achieve the same clamping force. With fewer fasteners you save on drilling and tapping and have fewer screws to buy and install. If you go the other way, smaller screws generally cost less and permit reduced assembly size, saving space, material and weight.

If you have dynamic stress or varying load conditions, the exceptional fatigue resistance of Unbrako screws gives you an additional bonus of built-in protection against fatigue failure.

Design

One of three major factors in the superiority of Unbrako socket head screws is design. For example, socket depth is carefully controlled. The socket is deep enough for full tightening without reaming and cracking, but not deep enough to weaken the head area and cause failure.

Inspired by our research and development of aerospace fasteners, another major feature on Unbrako socket screws is the Radiused-Root-Runout. The root of the thread runout is also radiused to eliminate the usual sharp 'V' - a major point of weakness in other threads. Fatigue life in this critical area is increased as much as 300% in certain sizes.

Class 4g 6g tolerances are standard, the closest without selective assembly. They combine maximum cross-section with smooth assembly, and assure better mating of parts.

The elliptical fillet at the juncture of head and shank is another aerospace-inspired Unbrako development. This compound curve more than doubles fatigue life in the head area without reduction of critical bearing area. Discontinuity is minimised and stress concentrations are reduced, providing an added margin of safety. Heads are correctly proportioned to screw size, assuring full clamping force without indentation and loss of preload.

Properties

Second major factor in Unbrako socket screw superiority is their physical properties. These are no accident. Consistently higher stress levels area direct result of customised heat treatment. Carbon content of furnace atmospheres is closely controlled, since carburisation (too much carbon) makes screws brittle, while decarburisation (too little carbon) results in soft surface with poor strength and resistance to wear. Every melt of Unbrako steel is pretested and its treatment tailored to produce a consistent part.

Manufacturing Control

Closely controlled manufacturing is the third factor. Rigid control of every operation of a socket screw is necessary in order to guarantee performance.

Heads of standard Unbrako socket screws are forged, not machined. Machining cuts metal fibres, breaks flow lines, creates planes of weakness at stress points. Forging, on the other hand, forms metal, produces uniform grain flow, makes heads stronger by compressing the metal. Head bearing area is strictly perpendicular to screw body to avoid strains and misalignment. Fillet areas are precisely controlled, with fillets made glass smooth to eliminate surface irregularities where cracks can start.

Radiused threads of standard Unbrako screws are rolled, not ground or cut. Rolled threads are more uniform and closer tolerances can be maintained because Unbrako thread roll dies and rolling techniques produce smoother surfaces and more accurate size control. High points and planes of weakness are avoided.

Plating

Plating becomes more critical as the demand for plated screws increases. Unbrako socket screws that are to be plated are accurately controlled to be within tolerance after plating. Precision plating thickness brings screws to correct dimensions, while rigid control of the plating process guards against screw failure from hydrogen embrittlement. This is a brittle condition caused by hydrogen diffusing into the base material during cleaning and electroplating. It can cause screw failure long after the screw is tightened, but can be avoided by the extreme care Unbrako take in processing plated socket screws.

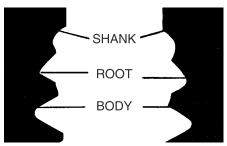
Unbrako Socket Screws pay off in Savings

You get extra safety and reliability in Unbrako socket screws, plus significant economies, both in the cost of the fasteners and the cost of their installation. Furthermore, they protect the reputation of your product, which can well depend on the fasteners that hold it together.

These are considerations too important to overlook as production costs continue to rise and reliability requirements become more exacting.

UNBRAKO DEVELOPMENTS MEAN

- Extra Strength Where If Counts



Deep, accurate socket for uniform wrenching power and high maximum torques. Precise knurls for easier handling and quick identification.

Precision forged head for continuous grain flow and maximum strength.

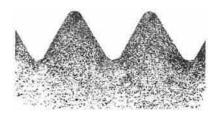
Elliptical head to shank fillet for increased fatigue life.

Radiused-root runout increases fatigue life.

CONVENTIONAL THREAD
RUNOUT Note sharp angle at root where high stress concentration can develop cracks in the screw.

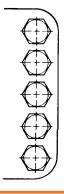
UNBRAKO RADIUSED ROOT
RUNOUT THREAD - Controlled
radius of runout root provides a
smooth form that distributes
stress and increases fatigue life
of fastener considerably.

Fully formed radiused threads rolled to maintain continuous grain flow for greater tensile and fatigue strength.

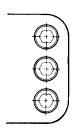

Heat treatment in a controlled atmosphere for maximum uniform strength and surface integrity without brittleness or decarburisation.

Accurate control of socket depth gives more wrench engagement than other screws, permitting full tightening without cracking or reaming the socket, yet maintaining ample metal in the crucial fillet area for maximum head strength.

Controlled head forging forms uniform grain flow with unbroken flow lines, makes heads stronger, prevents failure in vital fillet area and adds to fatigue strength of the screw.

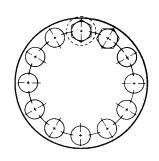


Cross-section of radiused fully formed threads. Contour following flow lines provide extra shear strength in threads, resist stripping and provide high fatigue resistance. Note the large root radius, an Unbrako socket screw development that increases fatigue life of the threads.

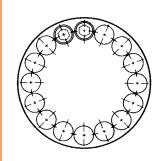


APPLICATIONS

FEWER HOLES TO DRILL AND TAP



Three screws do the work of five



COMPACT SPACING

Clearance for socket wrench

No wrench clearance necessary

Old Method

5 - M10 Screws @ 800 N/mm² tensile

640 N/mm² yield = 5 x 640 x 58 = 186 kN max. load Unbrako Method

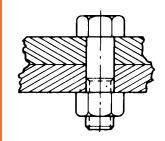
3 - M10 Screws @ 1300 N/mm² tensile

1170 N/mm² yield = 3 x 1170 x 58 = 204 kN max. load

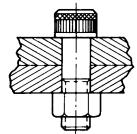
Old Method

12 - M16 Hexagon Head Screws @ 800 N/mm² tensile strength

Total strength = 1206 kN

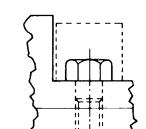

Unbrako Method

16 - M16 Socket Head Cap Screws @ 1300 N/mm² tensile strength


Total strength = 2940 kN

HIGH TENSILE AND YIELD STRENGTH

Ordinary Bolts



Socket Head Cap Screws

HIGH SHEAR STRENGTH

Ordinary Bolts

Socket Head Cap Screws

Old Method

800 N/mm² M12 Bolt tensile = 67 kN yield = 54 kN

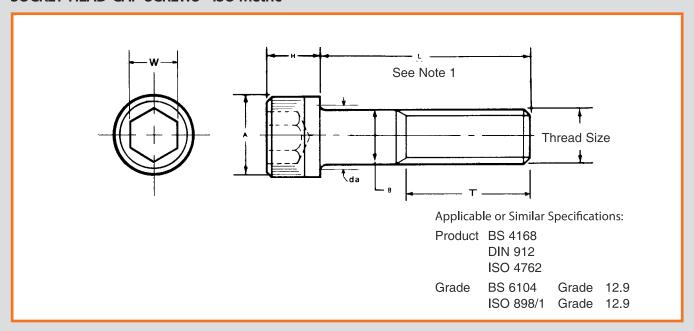
Unbrako Method

1300 N/mm² M12 Unbrako Bolt tensile = 110 kN vield = 99 kN

Extra Unbrako Joint Strength: tensile = 64% Increase yield = 83% Increase

Old Method

800 N/mm² M12 Bolt Shear Strength = 40 kN


Unbrako Method

1300 N/mm² M12 Unbrako Bolt Shear Strength = 66 kN Extra Unbrako Shear Strength = 26 kN less wrenching space needed

Example (shown above) - against adjacent machine parts Unbrako Screw requires 50% less space for clearance. In counterbored screw application Unbrako Screws require minimum counterbore since no wrench clearance is necessary.

SOCKET HEAD CAP SCREWS - ISO Metric

DIMENSIONS AND TIGHTENING TORQUES - ISO Metric Threads

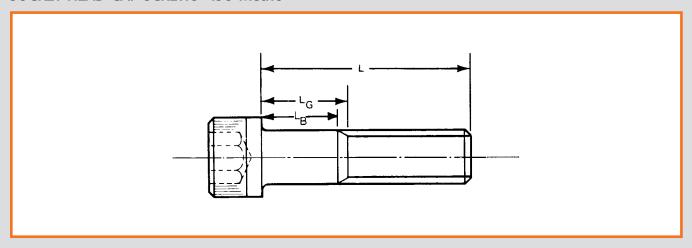
						SEE		Maxi	mum Tighter	ning Torques	;		
Thread						NOTE 2	Longth	Unplated Plated		Induced I	Load		
Size (B Max.)	Pitch	A Max.	da Max.	H Max.	W Nom.	L L	Length of Thread T (Ref)	Nm	lbf.in.	Nm	lbf.in.	kN	lbf.
МЗ	0.50	5.50	3.60	3.00	2.5	20	18	2.1	18.6	1.6	14.2	3.99	890
M4	0.70	7.00	4.70	4.00	3.0	25	20	4.6	40.7	3.5	31.0	6.75	1510
M5	0.80	8.50	5.70	5.00	4.0	25	22	9.5	84.1	7.1	62.8	11.10	2480
M6	1.00	10.00	6.80	6.00	5.0	30	24	16.0	142.0	12.0	106.0	15.60	3480
M8	1.25	13.00	9.20	8.00	6.0	35	28	39.0	345.0	29.0	257.0	28.70	6400
M10	1.50	16.00	11.20	10.00	8.0	40	32	77.0	682.0	58.0	513.0	45.70	10200
M12	1.75	18.00	13.70	12.00	10.0	50	36	135.0	1200.0	101.0	894.0	66.70	14900
(M14)	2.00	21.00	15.70	14.00	12.0	55	40	215.0	1900.0	161.0	1420.0	91.30	20400
M16	2.00	24.00	17.70	16.00	14.0	60	44	330.0	2920.0	248.0	2190.0	126.00	28100
(M18)	2.50	27.00	20.20	18.00	14.0	65	48	455.0	4030.0	341.0	3020.0	153.00	34100
M20	2.50	30.00	22.40	20.00	17.0	70	52	650.0	5750.0	488.0	4320.0	197.00	44000
(M22)	2.50	33.00	24.40	22.00	17.0	70	56	870.0	7700.0	652.0	5770.0	245.00	54700
M24	3.00	36.00	26.40	24.00	19.0	80	60	1100.0	9740.0	825.0	7300.0	284.00	63400
M27	3.00	40.00	30.40	27.00	19.0	90	66	1650.0	14600.0	1238.0	11000.0	374.00	83400
M30	3.50	45.00	33.40	30.00	22.0	100	72	2250.0	19900.0	1688.0	15000.0	454.00	101000
M33	3.50	50.00	36.40	33.00	24.0	100	78	3050.0	27000.0	2287.0	20200.0	550.00	123000
M36	4.00	54.00	39.40	36.00	27.0	110	84	3850.0	34100.0	2888.0	25000.0	664.00	148000
M42	4.50	63.00	45.60	42.00	32.0	130	96	6270.0	55500.0	4700.0	41600.0	889.00	198000

ALL DIMENSIONS IN MILLIMETRES. SIZES IN BRACKETS ARE NON-PREFERRED STANDARDS.

MECHANICAL PROPERTIES

Material	Unbrako High Alloy Steel	Grade
Heat Treatment	Rc 40-43	
Screw Size	≤M16	>M16
Tensile Strength	1300 N/mm ²	1250 N/mm ²
Yield Strength	1170 N/mm ²	1124 N/mm ²
Shear Strength	780 N/mm ²	750 N/mm ²
Min. Elongation	9%	9%

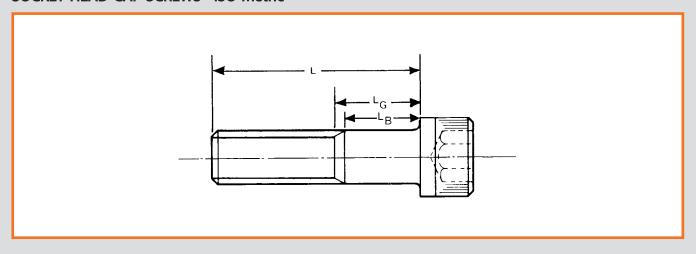
NOTES:


- 1. Thread and Grip Lengths are shown on Pages 8 & 9.
- 2. Screws with lengths equal or shorter than listed in column 'L' will be threaded to head.

3. Thread Class:4g6g4. da:Transition Diameter5. Working Temperature:-50°C+300°C

6. Torques calculated in accordance with VDI 2230 "Systematic calculation of high duty bolted joints" with σ 0.2 = 1080 N/mm² and μ = 0.125 for plain finish and μ = 0.094 for plated.

SOCKET HEAD CAP SCREWS - ISO Metric


BODY AND GRIP LENGTHS - ISO Metric Threads

	Body		Length 'L'													
Thread Size	and Grip Lengths	20	25	30	35	40	45	50	55	60	65	70	80			
	LB. Min.	To Head	4.5	9.5												
МЗ	LG. Max.		7.0	12.0												
	LB. Min.	—	To Head	6.5	11.5	16.50										
M4	LG. Max.			10.0	15.0	20.00										
145	LB. Min.		To Head	4.0	9.0	14.00	19.00	24.00								
M5	LG. Max.			8.0	13.0	18.00	23.00	28.00								
MC	LB. Min.			To Head	6.0	11.00	16.00	21.00	26.00	31.00						
M6	LG. Max.				11.00	16.00	21.00	26.00	31.00	36.00						
MO	LB. Min.			—	To Head	5.75	10.75	15.75	20.75	25.75	30.75	35.75	45.75			
M8	LG. Max.					12.00	17.00	22.00	27.00	32.00	37.00	42.00	52.00			
1440	LB. Min.				>	To Head	5.50	10.50	15.50	20.50	25.50	30.50	40.50			
M10	LG. Max.						13.00	18.00	23.00	28.00	33.00	38.00	48.00			
1440	LB. Min.							To Head	10.25	15.25	20.25	25.25	35.25			
M12	LG. Max.								19.00	24.00	29.00	34.00	44.00			
(3.5.4.4)	LB. Min.							-	To Head	10.00	15.00	20.00	30.00			
(M14)	LG. Max.									20.00	25.00	30.00	40.00			
	LB. Min.									To Head	11.00	16.00	26.00			
M16	LG. Max.										21.00	26.00	36.00			
(2.4.0)	LB. Min.										To Head	9.50	19.50			
(M18)	LG. Max.											22.00	32.00			
	LB. Min.										-	To Head	15.50			
M20	LG. Max.												28.00			
(1.10.0)	LB. Min.										—	To Head	11.50			
(M22)	LG. Max.												24.00			
	LB. Min.											—	To Head			
M24	LG. Max.															
140=	LB. Min.															
M27	LG. Max.															
	LB. Min.															
M30	LG. Max.															
	LB. Min.															
M33	LG. Max.															
	LB. Min.															
M36	LG. Max.															
	LB. Min.															
M42	LG. Max.															

ALL DIMENSIONS IN MILLIMETRES

SOCKET HEAD CAP SCREWS - ISO Metric

90	100	110	120	130	140	150	160	180	200	220	240	260	280
E0 E0	60.50												
50.50 58.00	60.50 68.00												
45.25	55.25	65.25	75.25										
54.00	64.00	74.00	84.00										
40.00	50.00	60.00	70.00	80.0	9.0								
50.00	60.00	70.00	80.00	90.0	100.0								
36.00	46.00	56.00	66.00	76.0	86.0	96.0	106.0						
46.00	56.00	66.00	76.00	86.0	96.0	106.0	116.0						
29.50	39.50	49.50	59.50	69.5	79.5	89.5	99.5	119.5					
42.00	52.00	62.00	72.00	82.0	92.0	102.0	112.0	132.0					
25.50	35.50	45.50	55.50	65.5	75.5	85.5	95.5	115.5	135.5				
38.00	48.00	58.00	68.00	78.0	88.0	98.0	108.0	128.0	148.0				
21.50	31.50	41.50	51.50	61.5	71.5	81.5	91.5	111.5	131.5	151.5			
34.00	44.00	54.00	64.00	74.0	84.0	94.0	104.0	124.0	144.0	164.0			
15.00	25.00	35.00	45.00	55.0	65.0	75.0	85.0	105.0	125.0	145.0	165.0		
30.00	40.00	50.00	60.00	70.0	80.0	90.0	100.0	120.0	140.0	160.0	180.0		
To Head	19.00	29.00	39.00	49.0	59.0	69.0	79.0	99.0	119.0	139.0	159.0	179.0	
	34.00	44.00	54.00	64.0	74.0	84.0	94.0	114.0	134.0	154.0	174.0	194.0	
→	To Head	20.50	30.50	40.5	50.5	60.5	70.5	90.5	110.5	130.5	150.5	170.5	190.5
		38.00	48.00	58.0	68.0	78.0	88.0	108.0	128.0	148.0	168.0	188.0	208.0
→	To Head	14.50	24.50	34.5	44.5	54.5	64.5	84.5	104.5	124.5	144.5	164.5	184.5
		32.00	42.00	52.0	62.0	72.0	82.0	102.0	122.0	142.0	162.0	182.0	202.0
	>	To Head	16.00	26.0	36.0	46.0	56.0	76.0	96.0	116.0	136.0	156.0	176.0
			36.00	46.0	56.0	66.0	76.0	96.0	116.0	136.0	156.0	176.0	196.0
				To Head	21.5	31.5	41.5	61.5	81.5	101.5	121.5	141.5	161.5
	<u> </u>				44.0	54.0	64.0	84.0	104.0	124.0	144.0	164.0	184.0

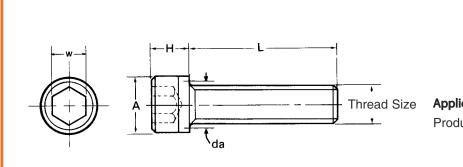
Length	Length 'L' Tolerance (mm)											
Screws Over	Up to and Tol including	erance										
-	50	±0.25										
50	80	±0.50										
80	120	±0.70										
120	250	±0.80										
250	-	±1.00										

NOTES:

- 1. Dimensional and tightening information for standard metric cap screws on Page 7 and metric low head on Page 11.

2. Dimensions for LB and LG are calculated from the following formula:

T Ref = (2x Nominal Dia) plus 12mm.


LG max = Nominal length "L" minus "T"

LB min = Nominal length "L" minus (T + 5 pitches)

3. Screws ordered to an intermediate length shall have a grip length equal to that of the screw of the next shortest length.

- ISO Metric Micro Screws

Applicable or Similar Specifications:

Product BS 4168

DIN 912 ISO 4762

Grade

BS 6104 Grade 12.9 ISO 898/1 Grade 12.9

DIMENSIONS AND TIGHTENING TORQUES - ISO Metric Threads

								Maxii	mum Tightei	ning Torques	:				
					Length L		Length L			Unpla	nted	Plate	d	Induced	Load
Thread Size	Pitch				Min.	Max.	W Nom.	Nm	lbf.in.	Nm	lbf.in.	N	lbf.		
M1.4	0.30	2.6	1.8	1.4	3	6	1.27	0.20	1.8	0.15	1.3	733	164		
M1.6	0.35	3.0	2.0	1.6	3	6	1.50	0.29	2.6	0.22	2.0	930	208		
(M1.7)	0.35	3.0	2.1	1.7	3	6	1.50	0.35	3.1	0.26	2.3	1100	246		
M1.8	0.35	3.4	2.3	1.8	3	6	1.50	0.44	3.9	0.33	2.9	1300	291		
M2	0.40	3.8	2.6	2.0	3	12	1.50	0.60	5.3	0.45	4.0	1550	347		
(M2.3)	0.40	4.0	2.9	2.3	4	15	2.00	0.95	8.4	0.71	6.3	2230	500		
M2.5	0.45	4.5	3.1	2.5	4	15	2.00	1.21	10.7	0.90	8.0	2590	580		
(M2.6)	0.45	4.5	3.2	2.6	4	15	2.00	1.37	12.1	1.03	9.1	2860	640		

ALL DIMENSIONS IN MILLIMETRES. SIZES IN BRACKETS ARE NON-PREFERRED STANDARDS.

MECHANICAL PROPERTIES

Material Unbrako High Grade

Alloy Steel

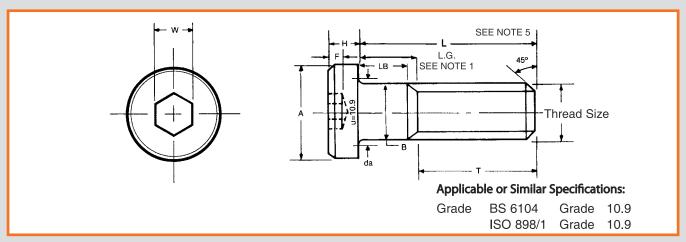
Heat Treatment Rc 40-43 **Tensile Strength** 1300 N/mm² **Yield Strength** 1170 N/mm² **Shear Strength** 780 N/mm²

Min. Elongation 9%

NOTES:

1. Thread Class: 4g 6g

Transition Diameter 2. da: -50°C 3. Working Temperature: +300°C


4. Torques calculated in accordance with VDI 2230 "Systematic calculation of high duty bolted joints" with σ 0.2 = 1080 N/mm² and μ = 0.125 for plain finish

and $\mu = 0.094$ for plated.

Length 'L' Tolerance (mm)											
Screws Over	Up to and including	Tolerance									
-	3.0	±0.20									
3.0	6.0	±0.24									
6.0	-	±0.25									

- Low Head ISO Metric

DIMENSIONS and TIGHTENING TORQUES - ISO Metric Threads

							Maximum Tightening Torques					
Thread							Unpla	Unplated		d	Induced	Load
Size (B max.)							Nm	lbf.in.	Nm	lbf.in.	kN	lbf.
M4	7.0	4.7	1.48	2.8	20	3	3.8	33.6	2.9	25.7	5.65	1270
M5	8.5	5.7	1.85	3.5	22	4	8.0	70.8	6.0	53.1	9.20	2068
M6	10.0	6.8	2.09	4.0	24	5	13.0	115.0	9.8	86.7	13.00	2920
M8	13.0	9.2	2.48	5.0	28	6	32.0	283.0	24.0	212.0	23.90	5370
M10	16.0	11.2	3.36	6.5	32	8	64.0	566.0	48.0	425.0	38.00	8540
M12	18.0	14.2	4.26	8.0	36	10	110.0	974.0	83.0	735.0	55.50	12470
M16	24.0	18.2	4.76	10.0	44	12	275.0	2434.0	206.0	1820.0	105.00	23600
M20	30.0	22.4	6.07	12.5	52	14	550.0	4870.0	405.0	3585.0	164.00	36800

ALL DIMENSIONS IN MILLIMETRES.

MECHANICAL PROPERTIES

Material Unbrako High Grade

Alloy Steel

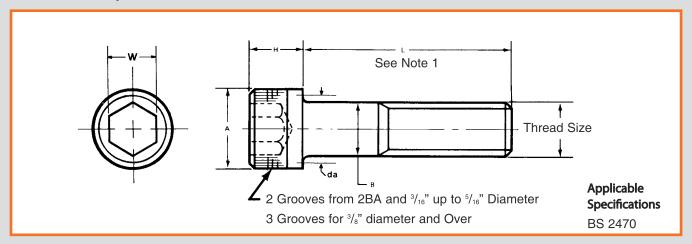
Heat TreatmentRc 33-39Tensile Strength1040 N/mm²Yield Strength940 N/mm²Shear Strength624 N/mm²

Min. Elongation 9%

NOTES:

1. Thread and Grip Lengths are shown on Pages 8 & 9.

2. Thread Class: 4g 6g


3. da: Transition Diameter **4. Working Temperature:** -50°C +300°C

5. See Page 9 for Length Tolerance.

6. Sizes M5 and larger are stamped U 10.9. Torques calculated in accordance with VDI 2230 "Systematic calculation of high duty bolted joints" with σ 0.2 = 900 N/mm² and μ = 0.125 for plain finish and μ = 0.094 for plated.

- 1936 Series BA, BSW and BSF Threads

DIMENSIONS AND TIGHTENING TORQUES - BA, BSW and BSF Threads

								Maximur	n Tightenin ir	ng Torques I n.	bf.		
	Thre	eads						Unpl	ated	Pla	ted		
Thread Size	Per l		A Max.	B Max.	da Max.	H Max.	W Nom.	В	A	B	A	Induced	
8BA	59	9.1	0.140	0.0866	0.1026	0.087	1/16		5.0		4	3	59
7BA	1	2.9	0.161	0.0984	0.1144	0.098	1/16		8.5		6	4	67
6BA	4	7.9	0.187	0.1102	0.1282	0.110	5/ ₆₄	1	2.0		9	5	89
5BA	4;	3.1	0.219	0.1260	0.1460	0.126	3/32	1	9.0		15	7	79
4BA	38	8.5	0.219	0.1417	0.1617	0.142	3/ ₃₂	2	4.0		18	g	91
3BA	34	4.8	0.250	0.1614	0.1854	0.161	1/8	3	5.0		27	12	97
2BA	3	1.4	0.312	0.1850	0.2130	0.187	5/ ₃₂	4	9.0		37	17	29
1BA	28	8.2	0.312	0.2087	0.2367	0.209	5/ ₃₂	8	0.0		60	22	:10
0BA	2	5.4	0.375	0.2362	0.2642	0.236	^{3/} 16	14	4.0	1	08	28	49
	BSW	BSF						BSW	BSF	BSW	BSF	BSW	BSF
1/8	40	-	0.219	0.1250	0.1460	0.125	3/ ₃₂	14	-	11	-	721	-
3/ ₁₆	24	32	0.312	0.1875	0.2155	0.187	5/ ₃₂	44	50	33	38	1538	1753
1/4	20	26	0.375	0.2500	0.2780	0.250	3/ ₁₆	108	144	81	108	2772	2951
		lbf.ft.											
^{5/} 16	18	22	0.437	0.3125	0.3465	0.312	7/ ₃₂	23	23	18	18	4588	4956
3/ ₈	16	20	0.562	0.3750	0.4150	0.375	5/ ₁₆	44	49	33	37	6813	7364
^{7/} 16	14	18	0.625	0.4375	0.4835	0.437	5/ ₁₆	68	74	51	55	9365	10180
1/2	12	16	0.750	0.5000	0.5520	0.500	3/ ₈	101	111	76	83	12140	13390
^{9/} 16	12	16	0.812	0.5625	0.6225	0.562	3/ ₈	154	169	116	124	16452	17847
5/ ₈	11	14	0.875	0.6250	0.6890	0.625	1/2	184	193	138	145	20020	21470
3/ ₄	10	12	1.000	0.7500	0.8280	0.750	9/ ₁₆	297	308	223	231	29680	30480
7/ ₈	9	11	1.125	0.8750	0.9630	0.875	9/16	518	488	389	366	41030	43180
1	8	10	1.312	1.0000	1.1000	1.000	5/ ₈	758	789	569	592	53890	56920
11/8	7	9	1.500	1.1250	1.2350	1.125	3/4	934	993	700	744	49820	52890
11/4	7	9	1.750	1.2500	1.3700	1.250	3/4	1318	1390	988	1043	63230	66760
1 3/ ₈	6	8	1.875	1.3750	1.5050	1.375	3/4	1330	1418	997	1063	57990	61880
11/2	6	8	2.000	1.5000	1.6400	1.500	1	2291	2430	1717	1823	91640	97230
15/ ₈	5	8	2.250	1.6250	1.7500	1.625	1	-	3132	<u>-</u>	2349	-	115600
1 3/ ₄	5	7	2.500	1.7500	1.9100	1.750	11/4	3610	3874	2708	2905	123800	
2	41/2	7	2.750	2.0000	2.1800	2.000	1 3/ ₈	5425	5907	4073	4430	162900	177200

ALL DIMENSIONS IN INCHES.

MECHANICAL PROPERTIES

Material Unbrako High Grade Alloy Steel

Heat Treatment Rc 39-43

Screw Size ≤0.500 >0.500

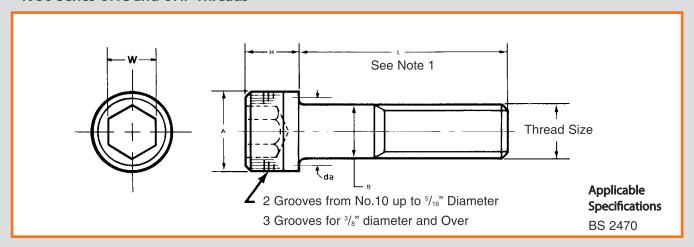
190,000 lbf/in2 180,000 lbf/in2 **Tensile Strength** 170,000 lbf/in2 162,000 lbf/in2 **Yield Strength**

Shear Strength 114,000 |bf/in2 108,000 |bf/in2 9% 9%

Min. Elongation

NOTES:

1. For body and thread lengths see pages 14 & 15.


2. Thread Class: BA - Close

BSW and BSF - Medium Transition Diameter 3. da:

4. Working Temperature: -50°C +300°C

- 1936 Series UNC and UNF Threads

DIMENSIONS AND TIGHTENING TORQUES - UNC and UNF Threads

								Maximum	Tightening 1	Torques Ibf. i	n.		
	Threads Po	er Inch						Unpla	ted	Plate	d	Induced Ib	
Thread Size	UNC	UNF	A Max.	BtMa.	da Max.	H Max.	W Nom.	UNC	UNF	UNC	UNF	UNC	UNF
No.4	40	48	0.183	0.1120	0.1300	0.112	5 / ₆₄	13.2	14.5	9.9	10.9	640	720
No.5	40	44	0.205	0.1250	0.1450	0.125	³ / ₃₂	19.6	20.5	14.7	15.4	860	920
No.6	32	40	0.226	0.1380	0.1580	0.138	³ / ₃₂	24.5	27.6	18.4	20.7	960	1120
No.8	32	36	0.270	0.1640	0.1880	0.164	1/8	45.5	48.0	34.1	36.0	1540	1640
No.10	24	32	0.312	0.1900	0.2180	0.190	⁵ / ₃₂	65.4	75.5	49.1	56.6	1880	2240
No.12	24	28	0.343	0.2160	0.2440	0.216	⁵ / ₃₂	102.0	109.0	76.5	81.8	2650	2890
1/4	20	28	0.375	0.2500	0.2780	0.250	¹ / ₁₆	153	176.0	115.0	132.0	3470	4150
									II	of.ft.			
⁵ / ₁₆	18	24	0.437	0.3125	0.3465	0.312	7/ ₃₂	26.3	29.3	19.7	22.0	5830	6680
³ / ₈	16	24	0.562	0.3750	0.4150	0.375	⁵ / ₁₆	46.8	53.2	35.1	39.9	8700	10300
⁷ / ₁₆	14	20	0.625	0.4375	0.4835	0.437	⁵ / ₁₆	75.0	84.0	56.3	63.0	12000	13900
1/2	13	20	0.750	0.5000	0.5520	0.500	³ / ₈	115.0	129.0	86.3	96.8	16100	18800
⁹ / ₁₆	12	18	0.812	0.5625	0.6225	0.562	³ / ₈	165.0	185.0	124.0	139.0	20800	23900
⁵ / ₈	11	18	0.875	0.6250	0.6890	0.625	1/2	228.0	258.0	171.0	194.0	25800	30400
³ / ₄	10	16	1.000	0.7500	0.8280	0.750	⁹ / ₁₆	363.0	405.0	273.0	304.0	34600	39900
⁷ /8	9	14	1.125	0.8750	0.9630	0.875	⁹ / ₁₆	575.0	510.0	430.0	380.0	47100	48600
1	8	12	1.312	1.0000	1.1100	1.000	⁵ /8	788.0	700.0	590.0	525.0	56600	58200
1 ¹ / ₈	7	12	1.500	1.1250	1.2350	1.125	3/4	1250.0	1115.0	935.0	835.0	76320	85580
1 ¹ / ₄	7	12	1.750	1.2500	1.3700	1.250	3/4	1750.0	1560.0	1310.0	1170.0	96990	107300
1 ³ / ₈	6	12	1.875	1.3750	1.5050	1.375	3/4	2320.0	2070.0	1740.0	1550.0	115500	131500
1 ¹ / ₂	6	12	2.000	1.5000	1.6400	1.500	1	3040.0	2710.0	2280.0	2030.0	132000	137000
1 ³ / ₄	5	12	2.500	1.7500	1.9100	1.750	1 ¹ / ₄	4990.0	4450.0	3740.0	3335.0	186000	194000
2	4	12	2.750	2.0000	2.1800	2.000	1 ³ / ₈	7490.0	6680.0	5615.0	5010.0	216500	227000

ALL DIMENSIONS IN INCHES.

MECHANICAL PROPERTIES

Material Unbrako High Grade Alloy Steel

Heat Treatment Rc 39-43

 Tensile Strength
 190,000 lbf/in² 180,000 lbf/in²

 Yield Strength
 170,000 lbf/in² 162,000 lbf/in²

 Shear Strength
 114,000 lbf/in² 108,000 lbf/in²

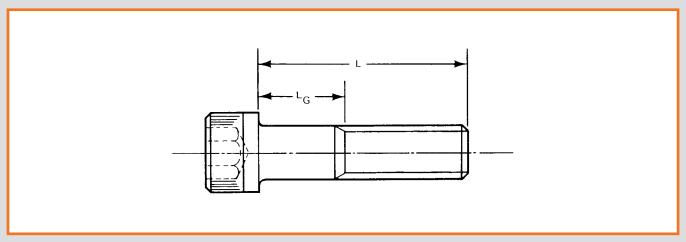
Min. Elongation 9% 9%

NOTES:

1. For body and thread lengths see pages 16 & 17.

2. Thread Class: #0 through 1" dia. - 3A

over 1" dia. - 2A


3. da: Transition Diameter

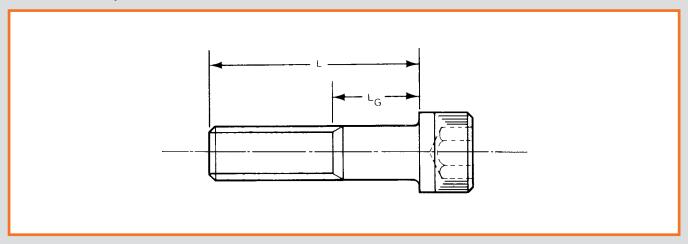
4. Working Temperature: -50°C +300°C

5. Torques calculated in accordance with VDI 2230 "Systematic calculation of high duty bolted joints" with σ 0.2 = 155 K.S.I. and μ = 0.125 for plain finish and μ = 0.094 for plated. Above 0.625" dia. σ 0.2 = 140 K.S.I.

- 1936 Series BA, BSW and BSF Threads

GRIP LENGTH - BA, BSW and BSF Threads

	Basic									Le	ngth 'L	<i>'</i>											
	Thread Length See	3/4	7/8	1	1 1/4	1 1/2	1 3/4	2	2 1/4	2 1/2	2 3/4	3	3 1/4	3 1/2	3 3/4	4	4 1/4	4 1/2	4 3/4	5	5 1/4	5 1/2	5 3/4
Thread Size	Note 2 (Page 15)									Grip L	ength '	L _G ′											
8BA	.625		.250	.250	.625	.875	1.125																
7BA	.625		.250	.250	.625	.875	1.125	1.375															
6BA	.750	'		.250	.250	.750	.750	1.250	1.250														
5BA	.750			.250	.250	.750	.750	1.250	1.250	1.750													
4BA	.750				.500	.500	1.000	1.000	1.500	1.500	2.000												
3ВА	.875				.375	.375	.875	.875	1.375	1.375	1.875	1.875	2.375										
2BA	.875				.375	.375	.875	.875	1.375	1.375	1.875	1.875	2.375	2.375	2.875	2.875							
1BA	1.000			·		.500	.500	1.000	1.000	1.500	1.500	2.000	2.000	2.500	2.500	3.000	3.000	3.500	3.500	4.000			
0BA	1.000					.500	.500	1.000	1.000	1.500	1.500	2.000	2.000	2.500	2.500	3.000	3.000	3.500	3.500	4.000			
1/8	.750			.250	.250	.750	.750	1.250	1.250	1.750													
3/16	.875				.375	.375	.875	.875	1.375	1.375	1.875	1.875	2.375	2.375	2.875	2.875							
1/4	1.000			'		.500	.500	1.000	1.000	1.500	1.500	2.000	2.000	2.500	2.500	3.000	3.000	3.500	3.500	4.000			
5/16	1.125						.625	.625	1.125	1.125	1.625	1.625	2.125	2.125	2.625	2.625	3.125	3.125	3.625	3.625	4.125	4.125	4.625
3/8	1.250						.500	.500	1.000	1.000	1.500	1.500	2.000	2.000	2.500	2.500	3.000	3.000	3.500	3.500	4.000	4.000	4.500
7/16	1.375							.625	.625	1.125	1.125	1.625	1.625	2.125	2.125	2.625	2.625	3.125	3.125	3.625	3.625	4.125	4.125
1/2	1.500								.750	.750	.750	1.500	1.500	1.500	2.250	2.250	2.250	3.000	3.000	3.000	3.750	3.750	3.750
9/16	1.625									.875	.875	.875	1.625	1.625	1.625	2.375	2.375	2.375	3.125	3.125	3.125	3.875	3.875
5/8	1.750		Sizes to the left of the heavy lines will be							.750	.750	.750	1.500	1.500	1.500	2.250	2.250	2.250	3.000	3.000	3.000	3.750	3.750
3/4	2.000			,	lines ded to							1.000	1.000	1.000	1.000	2.000	2.000	2.000	2.000	3.000	3.000	3.000	3.000
7/8	2.250		'	uneac	ม ย น เป	neau	•				'		1.000	1.000	1.000	1.000	2.000	2.000	2.000	2.000	3.000	3.000	3.000
1	2.500											'			1.000				2.000				

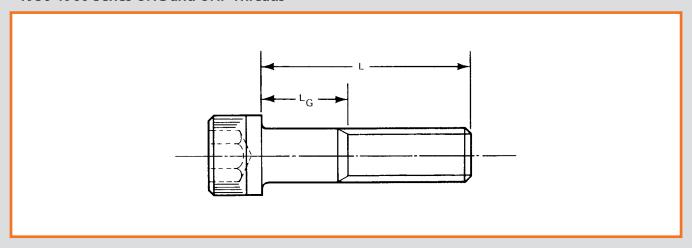

ALL DIMENSIONS IN INCHES.

BSW and BSW Thread Lengths of Large Diameter Screws

				Leng	th`L'			
	3	3 1/2	4	4 1/2	5	5 1/2	6	6 1/2 and over
Thread Size				Thread I	Length			
1 1/8			2.812					
1 1/4			3.125					
1 3/8				3.437				-
1 1/2	Sizes to the	a left of the			3.750			—
1 5/8	heavy line					4.062		
1 3/4	threaded	to head.				4.375		—
2								5.000

- 1936 Series BA, BSW and BSF Threads

6	6 1/4	6 1/2	6 3/4	7	7 1/4	7 1/2	7 3/4	8	8 1/2	9	9 1/2	10	11	12	13	14	15	16	17	18	19	20
										than sl												
							D		en nea e Note	vy line 2.	S											
4.625	5.125																					
4.500	5.000	5.000	5.500	5.500	6.000	6.000																
4.625	4.625	5.125	5.125	5.625	5.625	6.125	6.125	6.625	7.125	7.625												
4.500	4.500	4.500	5.250	5.250	5.250	6.000	6.000	6.000	7.000	7.000	8.000	8.000										
3.875	4.625	4.625	4.625	5.375	5.375	5.375	6.125	6.125	6.875	6.875	7.875	7.875										
3.750	4.500	4.500	4.500	5.250	5.250	5.250	6.000	6.000	6.750	6.750	7.750	7.750		10.250								
4.000	4.000	4.000 4.000	4.000 4.000	5.000 4.000	5.000 5.000	5.000 5.000	5.000 5.000	6.000 5.000	6.000 6.000	7.000 6.000	7.000 7.000	8.000 7.000	9.000	10.000				13.000	11.000	45.000		
3.000	4.000																					


Leng	gth `L' Tolerance	
Screws Over	Up to and including	Tolerance
-	1"	±0.016"
1"	6"	±0.031"
6"	16"	±0.062"
16"	-	±0.125"

NOTES:

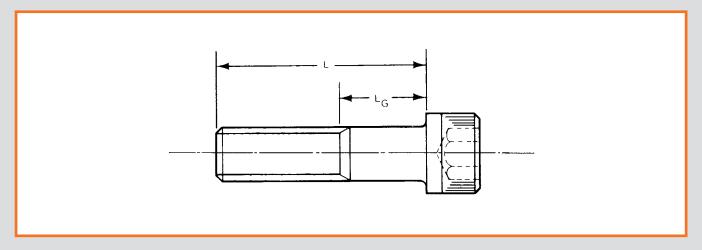
- 1. Dimensional and tightening information on Page 12.
- 2. Sizes longer than those between the heavy lines shall have a grip length calculated thus $L_G = L$ Basic Thread Length.
- 3. Tolerance on the grip length shall be $+0 2\frac{1}{2}$ pitches.
- **4.** Tolerance on the thread length shall be $+2^{1/2}$ pitches 0.
- Screws up to and including 1" dia. ordered to an intermediate length between the heavy lines shall have a grip length equal to that of the screw of the next shorter length.

- 1936-1960 Series UNC and UNF Threads

GRIP LENGTH - UNC and UNF Threads

	Basic Thread									Le	ngth 'L	<i>'</i>											
	Length See	3/4	7/8	1	1 1/4	1 1/2	1 3/4	2	2 1/4	2 1/2	2 3/4	3	3 1/4	3 1/2	3 3/4	4	4 1/4	4 1/2	4 3/4	5	5 1/4	5 1/2	5 3/4
Thread Size	Note 2									Grip L	ength '	Lgʻ											
No. 0*	.500	.250	.250	.500	.750																		
No. 1*	.625		.250	.250	.625	.875																	
No. 2*	.625		.250	.250	.625	.875	1.125																
No. 3*	.625		.250	.250	.625	.875	1.125	1.375															
No. 4	.750			.250	.250	.750	.750	1.250	1.250														
No. 5	.750			.250	.250	.750	.750	1.250	1.250	1.750													
No. 6	.750				.500	.500	1.000	1.000	1.500	1.500	2.000												
No. 8	.875				.375	.375	.875	.875	1.375	1.375	1.875	1.875	2.375										
No. 10	.875				.375	.375	.875	.875	1.375	1.375	1.875	1.875	2.375	2.375	2.875	2.875							
No. 12	.875				.375	.375	.875	.875	1.375	1.375	1.875	1.875	2.375	2.375	2.875	2.875							
1/4	1.000					.500	.500	1.000	1.000	1.500	1.500	2.000	2.000	2.500	2.500	3.000	3.000	3.500	3.500	4.000			
5/16	1.125						.625	.625	1.125	1.125	1.625	1.625	2.125	2.125	2.625	2.625	3.125	3.125	3.625	3.625	4.125	4.125	4.625
3/8	1.250						.500	.500	1.000	1.000	1.500	1.500	2.000	2.000	2.500	2.500	3.000	3.000	3.500	3.500	4.000	4.000	4.500
7/16	1.375							.625	.625	1.125	1.125	1.625	1.625	2.125	2.125	2.625	2.625	3.125	3.125	3.625	3.625	4.125	4.125
1/2	1.500								.750	.750	.750	1.500	1.500	1.500	2.250	2.250	2.250	3.000	3.000	3.000	3.750	3.750	3.750
9/16	1.625			٠.			,			.875	.875	.875	1.625	1.625	1.625	2.375	2.375	2.375	3.125	3.125	3.125	3.875	3.875
5/8	1.750		Sizes to the left of							.750	.750	.750	1.500	1.500	1.500	2.250	2.250	2.250	3.000	3.000	3.000	3.750	3.750
3/4	2.000		the heavy lines will be threaded to head.									1.000	1.000	1.000	1.000	2.000	2.000	2.000	2.000	3.000	3.000	3.000	3.000
7/8	2.250		•	unoac	100 to	noau	•						1.000	1.000	1.000	1.000	2.000	2.000	2.000	2.000	3.000	3.000	3.000
1	2.500													1.000	1.000	1.000	1.000	2.000	2.000	2.000	2.000	3.000	3.000

ALL DIMENSIONS IN INCHES.


*Available in 1960 Series only.

UNC and UNF Thread Lengths of Large Diameter Screws

				Lengt	ሐ ነ Ľ			
	3	3 1/2	4		5		6	6 1/2 and over
Thread Size				Thread I	ength.			
1 1/8 UNF		2.812						—
1 1/8 UNC			2.812					>
1 1/4 UNF			3.125					—
1 1/4 UNC			3.125					>
1 3/8 UNF			3.437					
1 3/8 UNC				3.437				—
1 1/2 UNF				3.750				—
1 1/2 UNC	Sizes to t		'		3.750			—
1 3/4 UNF	the heavy li threaded			'		4.375		-
2 UNC	illeaded	to riead.						5.000

- 1936-1960 Series UNC and UNF Threads

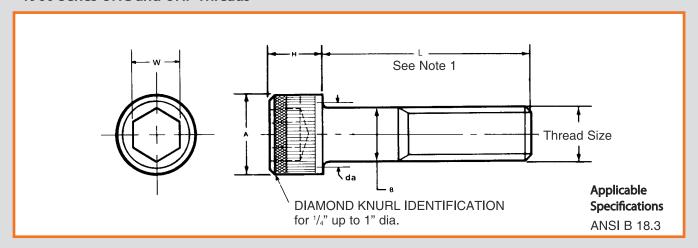
6	6	6	6	7	7	7	7	8	8	9	9 1/2	10	11	12	13	14	15	16	17	18	19	20
	1/4	1/2	3/4		1/4	1/2	3/4		1/2		1/2											
										ger tha												
							shov			neavy	lines											
								se	e Note	2.												
4.625	5.125																					
4.500	5.000	5.000	5.500	5.500	6.000	6.000																
4.625	4.625	5.125	5.125	5.625	5.625	6.125	6.125	6.625	7.125	7.625												
4.500	4.500	4.500	5.250	5.250	5.250	6.000	6.000	6.000	7.000	7.000	8.000	8.000										
3.875	4.625	4.625	4.625	5.375	5.375	5.375	6.125	6.125	6.875	6.875	7.875	7.875										
3.750	4.500	4.500	4.500	5.250	5.250	5.250	6.000	6.000	6.750	6.750	7.750	7.750	9.250	10.250								
4.000	4.000	4.000	4.000	5.000	5.000	5.000	5.000	6.000	6.000	7.000	7.000	8.000	9.000	10.000	11.000	12.000	13.000					
3.000	4.000	4.000	4.000	4.000	5.000	5.000	5.000	5.000	6.000	6.000	7.000	7.000	8.000	9.000	10.000	11.000	12.000	13.000	14.000	15.000		
3.000	3.000	4.000	4.000	4.000	4.000	5.000	5.000	5.000	6.000	6.000	7.000	7.000	8.000	9 000	10 000	11 000	12 000	13 000	14.000	15 000	16 000	17 C

1936 SERIES

Leng	gth 'L' Tolerand	:e
	1"	±.016"
-	'	
1"	6"	±.031"
6"	16"	±.062"
16"	-	±0.125"

1960 SERIES

5			Length 'L' Tolerance		
			Length		
		Up to 1" Incl.	Over 1" to 21/2"	Over 21/2" to 6"	Over 6"
	Nº 0 - 3/8"	-0.030"	-0.040"	-0.060"	-0.120"
	⁷ /16" - ³ /4"	-0.030"	-0.060"	-0.080"	-0.120"
	⁷ /8" - 1 ¹/2"	-0.030"	-0.100"	-0.140"	-0.200"
	Over 11/2"	-	-0.180"	-0.200"	-0.240"


NOTES:

- 1. Dimensional and tightening information for 1960 Series on Page 18 and 1936 Series on Page 13.
- 2. Sizes longer than those between the heavy lines shall have a grip length calculated thus $L_G = L$ Basic Thread Length.
- 3. Tolerance on the grip length shall be $+0 2^{1/2}$ pitches.
- **4.** Tolerance on the thread length shall be $+2^{1}/_{2}$ pitches 0.
- Screws up to and including 1" dia. ordered to an intermediate length between the heavy lines shall have a grip length equal to that of the screw of the next shorter length.

Jnbrako

SOCKET HEAD CAP SCREWS

- 1960 Series UNC and UNF Threads

DIMENSIONS AND TIGHTENING TORQUES - UNC and UNF Threads

								Maximum	Tightening 1	Torques Ibf. i	n.		
	Threads Pe	er Inch						Unpla	ted	Plate	d	Induced lb.	
Thread Size	UNC	UNF	A Max.	B Max.	da Max.	H Max.	W Nom.	UNC	UNF	UNC	UNF	UNC	UNF
No.0	-	80	0.096	0.060	0.074	0.060	0.050	-	2.1	-	1.6	-	190
No.1	64	72	0.118	0.073	0.087	0.073	¹ / ₁₆	3.7	3.9	2.7	2.9	280	300
No.2	56	64	0.140	0.0860	0.1020	0.086	⁵ / ₁₆	6.2	6.7	4.6	5.0	400	430
No.3	48	56	0.161	0.0990	0.1150	0.099	⁵ / ₁₆	9.3	10.2	7.0	7.6	520	580
No.4	40	48	0.183	0.1120	0.1300	0.112	³ / ₃₂	13.2	14.5	9.9	10.9	640	720
No.5	40	44	0.205	0.1250	0.1450	0.125	3/ ₃₂	19.6	20.5	14.7	15.4	860	920
No.6	32	40	0.226	0.1380	0.1580	0.138	3/ ₃₂	24.5	27.6	18.4	20.7	960	1120
No.8	32	36	0.270	0.1640	0.1880	0.164	1/8	45.5	48.0	34.1	36.0	1540	1640
No.10	24	32	0.312	0.1900	0.2180	0.190	⁵ / ₃₂	65.4	75.5	49.1	56.6	1880	2240
No.12	24	28	0.343	0.2160	0.2440	0.216	⁵ / ₃₂	102.0	109.0	76.5	81.8	2650	2890
1/4	20	28	0.375	0.2500	0.2780	0.250	¹ / ₁₆	153.0	176.0	115.0	132.0	3470	4150
									II	of.ft.			
⁵ / ₁₆	18	24	0.468	0.3125	0.3465	0.312	1/4	26.3	29.3	19.7	22.0	5830	6680
³ / ₈	16	24	0.562	0.3750	0.4150	0.375	⁵ / ₁₆	46.8	53.2	35.1	39.9	8700	10300
⁷ / ₁₆	14	20	0.625	0.4375	0.4835	0.437	³ / ₈	75.0	84.0	56.3	63.0	12000	13900
1/2	13	20	0.750	0.5000	0.5520	0.500	³ / ₈	115.0	129.0	86.3	96.8	16100	18800
⁹ / ₁₆	12	18	0.843	0.5625	0.6225	0.562	⁷ / ₁₆	165.0	185.0	124.0	139.0	20800	23900
⁵ /8	11	18	0.937	0.6250	0.6890	0.625	1/2	228.0	258.0	171.0	194.0	25800	30400
3/ ₄	10	16	1.125	0.7500	0.8280	0.750	⁵ / ₈	363.0	405.0	273.0	304.0	34600	39900
⁷ /8	9	14	1.312	0.8750	0.9630	0.875	3/4	586.0	646.0	440.0	485.0	48000	54600
1	8	12	1.500	1.0000	1.1100	1.000	3/4	879.0	962.0	660.0	722.0	63100	71000
1 ¹ / ₈	7	12	1.687	1.1250	1.2350	1.125	⁷ / ₈	1250.0	1400.0	938.0	1050.0	79500	92200
1 ¹ / ₄	7	12	1.875	1.2500	1.3700	1.250	⁷ / ₈	1760.0	1825.0	1320.0	1460.0	102000	109000
1 ³ / ₈	6	12	2.062	1.3750	1.5050	1.375	1	2320.0	2620.0	1730.0	1970.0	120000	143000
1 ¹ / ₂	6	12	2.250	1.5000	1.6400	1.500	1	2730.0	2730.0	2300.0	2580.0	132000	137000
1 ³ / ₄	5	12	2.625	1.7500	1.9100	1.750	1 ¹ / ₄	4990.0	4490.0	3630.0	4155.0	186000	194000
2	$4^{1}/_{2}$	12	3.000	2.0000	2.1800	2.000	1 ³ / ₈	7270.0	7750.0	5450.0	6270.0	264000	295000

ALL DIMENSIONS IN INCHES.

MECHANICAL PROPERTIES

Unbrako High Grade Alloy Steel Material

Rc 39-43 **Heat Treatment**

Screw Size ≤0.500 >0.500

190,000 lbf/in2 180,000 lbf/in2 **Tensile Strength Yield Strength** 170,000 lbf/in2 162,000 lbf/in2 **Shear Strength** 114,000 lbf/in2 108,000 lbf/in2

Min. Elongation 9% 9%

NOTES:

1. For body and thread lengths see pages 16 & 17.

#0 through 1" dia. - 3A over 1" dia. - 2A 2. Thread Class:

Transition Diameter 3. da: +300°C 4. Working Temperature: -50°C

5. Torques calculated in accordance with VDI 2230 "Systematic calculation of high duty bolted joints" with σ 0.2 = 155 K.S.I. and μ = 0.125 for plain finish and $\mu = 0.094$ for plated. Above 0.625" dia. $\sigma 0.2 = 140 \text{ K.S.I.}$

Modern equipment and machinery requires stronger more reliable joints to hold their parts together - and stronger more reliable fasteners. The requirement for dependability also holds true for fasteners used to hold thin section metals together in applications that also require a neat smooth surface.

That's why Unbrako countersunk screws are so widely used for fastening of plates, strips, mouldings, and other thin section parts. Unbrako countersunk screws provide reliable fastening and a smooth, attractive, flush mounting that enhances the appearance of the product on which they are used.

Unbrako countersunk screws provide more clamping force because they are manufactured from

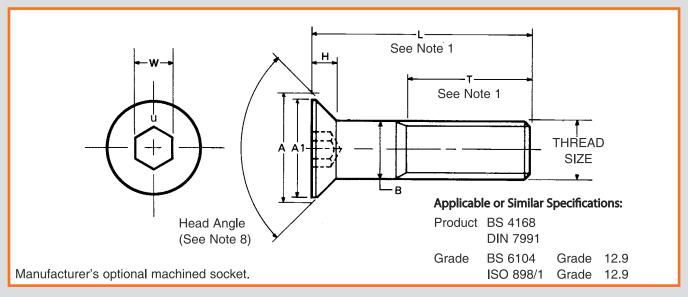
high grade alloy steel, and held to exacting tolerances to ensure the highest degree of dimensional uniformity. The closely controlled head angle assures flush seating, and close all-round head contact by initially contacting at the upper portion of the head bearing area in the countersunk hole. Closely controlled threads mean tighter and more secure fits, and stronger assemblies. Deep accurate non-slip sockets provide maximum key engagement for full tightening without marring the surrounding surface.

Unbrako countersunk screws are available with either plain or plated finish. Stainless steel screws are also available.

Deep, accurate socket for uniform wrenching power and high maximum torques.

Precision forged head for continuous grain flow and maximum strength.

Uniform under-head angle gives maximum contact with side walls.


Radiused-root runout increases fatigue life.

Fully formed radiused threads rolled to maintain continuous grain flow for greater tensile and fatigue strength.

Heat treatment in a controlled atmosphere for maximum uniform strength and surface integrity without brittleness or decarburisation.

DIMENSIONS AND TIGHTENING TORQUES - ISO Metric Threads

							Ma	ximum Tighter	ning Torques		
Thread		A Max.	A1 Max.				Unpl	ated	Plat	ed	Tensile Load
Size (B Max.)	Pitch	(See Note 2)	(See Note 3)	B Max.	H Ref.	W Nom.	Nm	lbf.in.	Nm	lbf.in.	kN
МЗ	0.50	6.72	5.82	2.98	1.86	2.0	1.4	12	1.1	9	5.28
M4	0.70	8.96	7.80	3.98	2.48	2.5	3.4	30	2.6	22	9.22
M5	0.80	11.2	9.78	4.98	3.10	3.0	6.8	60	5.1	45	14.90
M6	1.00	13.44	11.73	5.97	3.72	4.0	11.0	97	8.3	73	21.10
M8	1.25	17.92	15.73	7.97	4.96	5.0	28.0	248	21.0	186	38.40
M10	1.50	22.40	19.67	9.97	6.20	6.0	55.0	486	41.0	365	60.90
M12	1.75	26.88	23.67	11.97	7.44	8.0	95.0	840	71.0	630	88.50
(M14)	2.00	30.24	26.67	13.96	8.12	10.0	150.0	1330	112.0	990	121.00
M16	2.00	33.60	29.67	15.96	8.80	10.0	237.0	2100	177.0	1570	165.00
(M18)	2.50	36.96	32.61	17.96	9.48	12.0	340.0	3000	255.0	2250	202.00
M20	2.50	40.32	35.61	19.96	10.11	12.0	480.0	4250	360.0	3190	257.00
(M22)	2.50	37.38	35.61	21.96	13.32	14.0	637.0	5640	477.0	4220	318.00
M24	3.00	40.42	38.61	23.96	14.22	14.0	746.0	6600	585.0	5180	371.00

ALL DIMENSIONS IN MILLIMETRES. SIZES IN BRACKETS ARE NON-PREFERRED STANDARDS.

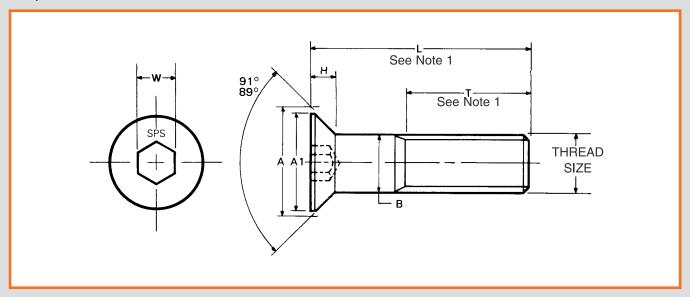
MECHANICAL PROPERTIES

Material Unbrako High Grade Alloy Steel

Heat Treatment Rc 39-44
Shear Strength 630 N/mm²

Min. Elongation 9%

NOTES:


- 1. For overall and thread lengths see pages 22 & 23.
- **2.** A Maximum theoretical sharp corner.
- 3. A1 Absolute minimum head diameter.
- **4.** G Transition diameter.

5. Thread Class: 4g 6g **6. Working Temperature:** -50°C +300°C

- 7. Torques calculated in accordance with VDI 2230 "Systematic calculation of high duty bolted joints" with σ 0.2 = 720 N/mm² and μ = 0.125 for plain finish and μ = 0.094 for plated.
- **8.** For sizes up to and including M20 Head Angle shall be 92°/90°, over M20 Head Angle be 62°/60°.
- **N.B.** Because of their head configurations, countersunk head screws may not meet the minimum ultimate tensile load for property class 12.9, specified in table 6 OF BS 6104: Part 1: 1981. They are nevertheless required to meet the other material and property requirements for property class 12.9 in BS 6104: Part 1.

- BA, BSW and BSF Threads

DIMENSIONS AND TIGHTENING TORQUES - BA, BSW and BSF Threads

								Maxim	_	ening Torqu n	es Ibf.		
	Threa	ads						Unpla	nted	Pla	ted	Tensile Lo	ad lbf.
Thread Size	Per Ir		A Max. (See Note 2)	A1 Max. (See Note 3)	B Max.	H Ref.	W Nom.	BA	\ \	B/	A	BA	١
8BA	5	9.1	.164	.147	.0866	.038	.050		2.0		1.5	6	38
6BA	4	7.9	.211	.189	.1102	.050	.050		4.0	(3.0	10	50
5BA	4	3.1	.239	.215	.1260	.056	1/ ₁₆		6.0	į	5.0	13	390
4BA	3	8.5	.269	.243	.1417	.063	1/16		8.5	(3 . 5	17	'60
3ВА	3.	4.8	.307	.277	.1614	.072	5/ ₆₄	1-	4.0	10	0.5	23	310
2BA	3	1.4	.351	.319	.1850	.083	3/ ₃₂	3:	2.0	24	4.0	30	70
1BA	2	8.2	.396	.360	.2087	.093	3/ ₃₂	3	5.0	26	0.6	39	929
0BA	2	5.4	.449	.408	.2362	.106	1/8	7:	2.0	54	4.0	50	70
	BSW	BSF						BSW	BSF	BSW	BSF	BSW	BSF
1/8	40	-	.239	.215	.1250	.057	1/ ₁₆	9.0	-	7.0	-	1280	-
^{3/} 16	24	32	.356	.323	.1875	.084	3/ ₃₂	27.5	32	20.5	24	2730	3120
1/4	20	26	.475	.432	.2500	.112	5/ ₃₂	95.0	98	71.0	74	5130	5710
5/ ₁₆	18	22	.594	.542	.3125	.140	3/ ₁₆	217.0	232	163.0	174	8440	9080
									f.ft.				
3/ ₈	16	20	.712	.651	.3750	.168	7/ ₃₂	26.0	32	19.5	24	12500	13400
^{7/} 16	14	18	.831	.761	.4375	.196	1/4	39.0	42	29.0	32	17100	18500
1/2	12	16	.950	.870	.5000	.225	5/ ₁₆	72.0	85	54.0	64	22200	24300
^{9/} 16	12	16	1.069	.979	.5625	.253	5/ ₁₆	103.0	112	771.0	837	29300	31700
5/ ₈	11	14	1.187	1.089	.6250	.281	3/ ₈	136.0	138	102.0	104	36400	38900
3/4	10	12	1.425	1.308	.7500	.337	3/8	138.0	140	104.0	105	53700	56400
7/ ₈	9	11	1.662	1.526	.8750	.393	1/2	338.0	356	253.0	266	74200	77800
1	8	10	1.900	1.745	1.0000	.450	9/ ₁₆	506.0	535	380.0	401	97300	
1 1/ ₈	7	9	2.138	1.964	1.1250	.506	5/ ₈	718.0	763	537.0	572		
1 1/ ₄	7	9	2.375	2.183	1.2500	.562	5/8	1013.0	1070	760.0	802	155600	164300

ALL DIMENSIONS IN INCHES.

MECHANICAL PROPERTIES

Material Unbrako High Grade Alloy Steel

Heat Treatment Rc 39-44 Shear Strength 96,000 lbf/in²

Min. Elongation 9%

NOTES:

1. For overall and thread lengths see page 24.

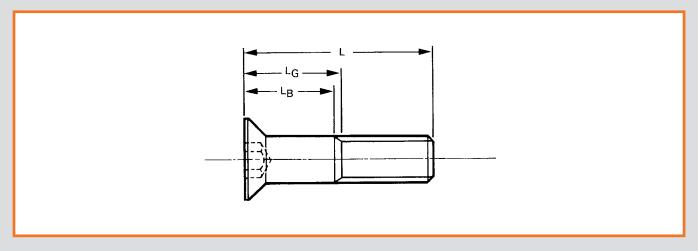
2. A - Maximum theoretical sharp corner.

3. A1 - Absolute minimum head diameter.

4. da - Transition diameter.

PSW and PSE

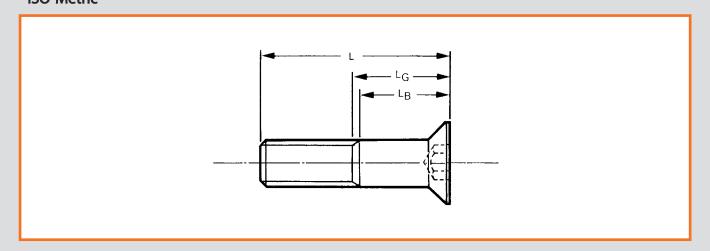
BSW and BSF - Medium re: -50°C +300°C


6. Working Temperature: -50°C -

N.B. Because of their head configurations, countersunk head screw tensile loads, are based on 160,000 lbf/in².

Close

- ISO Metric


BODY AND GRIP LENGTHS - ISO Metric Threads

							Length `L'					
Thread Size	Body and Grip Lengths	30	35	40	45	50	55	60	65	70	80	90
МЗ	LB. Max.	To Head	14.5	19.5	24.5	29.5	34.5					
IVIO	LG. Max.		17.0	22.0	27.0	32.0	37.0					
M4	LB. Max.	To Head	11.5	16.5	21.5	26.5	31.5	36.5	41.5	46.5	56.5	
IVI4	LG. Max.		15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	60.0	
M5	LB. Max.	>	To Head	14.0	19.0	24.0	29.0	34.0	39.0	44.0	54.0	64.0
CIVI	LG. Max.			18.0	23.0	28.0	33.0	38.0	43.0	48.0	58.0	68.0
M6	LB. Max.			To Head	16.0	21.0	26.0	31.0	36.0	41.0	51.0	61.0
IVIO	LG. Max.				21.0	26.0	31.0	36.0	41.0	46.0	56.0	66.0
M8	LB. Max.				To Head	15.75	20.75	25.75	30.75	35.75	45.75	55.7
IVI8	LG. Max.					22.0	27.0	32.0	37.0	42.0	52.0	62.0
M10	LB. Max.					-	To Head	20.5	25.5	30.5	40.5	50.5
IVITO	LG. Max.							28.0	33.0	38.0	48.0	58.0
M12	LB. Max.							To Head	20.2	25.2	35.2	45.2
IVI I Z	LG. Max.								29.0	34.0	44.0	54.0
M14	LB. Max.								To Head	20.0	30.0	40.0
IVI 14	LG. Max.									30.0	40.0	50.0
M16	LB. Max.									To Head	26.0	36.0
IVI I 6	LG. Max.										36.0	46.0
M40	LB. Max.										To Head	29.5
M18	LG. Max.											42.0
MOO	LB. Max.											-
M20	LG. Max.											
MOO	LB. Max.											
M22	LG. Max.											
1404	LB. Max.											
M24	LG. Max.											

ALL DIMENSIONS IN MILLIMETRES.

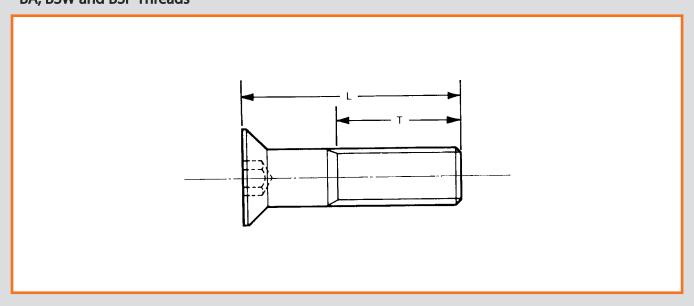
Unbrako_®

COUNTERSUNK SOCKET HEAD SCREWS - ISO Metric

100	110	120	130	140	150	160	180	200	220	240	
74.0											
74.0 78.0											
78.0	81.0	91.0									
76.0	86.0	96.0									
65.7	75.7		05.7	105.7	115.7						
72.0		85.7	95.7								
	82.0	92.0	102.0	112.0	122.0						
60.5	70.5	8.05	90.5	100.5	110.5						
68.0	78.0	88.0	98.0	108.0	118.0						
55.2	65.2	75.2	85.2	95.2	105.2						
64.0	74.0	84.0	94.0	104.0	114.0						
50.0	60.0	70.0	80.0	90.0	100.0						
60	70.0	80.0	90.0	100.0	110.0						
46.0	56.0	66.0	76.0	86.0	96.0	106.0	126.0				
56.0	66.0	76.0	86.0	96.0	106.0	116.0	136.0				
39.5	49.5	59.5	69.5	79.5	89.5	99.5	119.5	139.5			
52.0	62.0	72.0	82.0	92.0	102.0	112.0	132.0	156.0			
To Head	45.5	55.5	65.5	75.5	85.5	95.5	115.5	135.5			
	58.0	68.0	78.0	88.0	98.0	108.0	128.0	148.0			
>	To Head	51.5	61.5	71.5	81.5	91.5	111.5	131.5	151.5		
		64.0	74.0	84.0	94.0	104.0	124.0	144.0	164.0		
	>	To Head	55.0	65.0	75.0	85.0	105.0	125.0	145.0	165.0	
			70.0	80.0	90.0	100.0	120.0	140.0	160.0	180.0	

Length \L' Tolerance (mm)											
Screws	Up to and	Tolerance									
Over	Including										
-	50	±0.25									
50	80	±0.50									
80	120	±0.70									
120	250	±0.80									
250	-	±1.00									

NOTES:


- 1. Dimensions and tightening information on page 20.
- 2. Dimensions for LB and LG are calculated from the following formula.

T ref = (2x Nominal Dia.) plus 12mm LG. max = Nominal length 'L' minus 'T' LB. max = Nominal length 'L' minus ('T' + 5 P)

- **3.** LG is the max. distance from top of the head to the first complete thread. LB is the max. length of unthreaded portion measured from the top of head.
- **4.** Concentricity. body diameter to thread within 0.1mm per 20mm of body length T.I.R. taken directly under the head when screw is held by the full threads closest to the head of the screw.
- 5. The axis of the conical bearing surface shall be parallel to the axis of the body within $1/2^{\circ}$

COUNTERSUNK SOCKET HEAD SCREWS - BA, BSW and BSF Threads

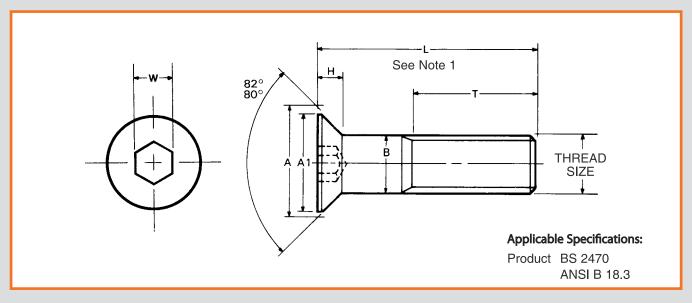
THREAD LENGTHS FOR STANDARD SCREW DIAMETERS - BA, BSW and BSF Threads

										Le	ength `L'										
	1	1 1/4	1 1/2	13/4	2	2 1/4	21/2	23/4	3	3 1/4	31/2	33/4	4	4 1/4	41/2	43/4	5	5 1/4	51/2	53/4	6
Threa			- /-							Length (- /-			- 7.			
d Size										Lengar	Ji iiiicu	u 1		<u> </u>							
8BA		1																			
6BA		1	1																		
5BA		1	1																		
4BA		1	1	1	1																
ЗВА		1	1	1	1																
2BA		1	1	1	1																
1BA		1	1	1	1																
0BA		1	1	1	1	1 1/8	1 1/4	1 3/8	11/2												
1/8		1	1																		
^{3/} 16		1	1	1																	
1/4			1	1	1	1 1/8	1 1/4	1 3/8	11/2	1 5/8	1 3/4	1 7/8	2								
^{5/} 16			1 1/8	1 1/8	1 1/8	1 1/8	1 1/4	1 3/8	11/2	1 5/8	1 3/4	1 7/8	2	21/8							
3/8				1 1/4	1 1/4	1 1/4	1 1/4	1 3/8	11/2	1 5/8	1 3/4	1 7/8	2	21/8	21/4	23/8	21/2				
^{7/} 16				13/8	1 3/8	13/8	1 3/8	1 3/8	11/2	1 5/8	13/4	1 7/8	2	21/8	21/4	23/8	21/2				
1/2							1 1/2	1 ¹ / ₂	11/2	1 5/8	1 3/4	1 7/8	2	21/8	21/4	23/8	21/2	25/8	23/4	27/8	3
^{9/} 16		Siza	es sho	rtor				1 5/8	1 5/8	1 5/8	1 3/4	1 7/8	2	21/8	21/4	23/8	21/2	2 ⁵ /8	23/4	27/8	3
5/8		_	those I					1 3/4	13/4	1 3/4	1 3/4	1 7/8	2	21/8	21/4	23/8	21/2	2 ⁵ /8	23/4	27/8	3
3/4		will b	e threa	aded					2	2	2	2	2	21/8	21/4	23/8	21/2	25/8	23/4	27/8	3
7/8		te	o head	l.						21/4	21/4	21/4	21/4	21/4	21/4	23/8	21/2	25/8	23/4	27/8	3
1										21/2	21/2	21/2	21/2	21/2	21/2	2 ¹ / ₂	21/2	25/8	23/4	27/8	3
1 ¹ /8												23/4	23/4	23/4	23/4	23/4	23/4	23/4	23/4	27/8	3
1 1/4													3	3	3	3	3	3	3	3	3

ALL DIMENSIONS IN INCHES.

Le	ength `L' Tolerance	
Screws Over	Up to and including	Tolerance
-	2"	±0.10"
2"	4"	±0.20"
4"	-	±0.30"

Thread Length Tolerance -0 +21/2 Pitches


NOTES:

1. Dimensions and tightening information on Page 21.

Unbrako

COUNTERSUNK SOCKET HEAD SCREWS

- UNC and UNF Threads

DIMENSIONS AND TIGHTENING TORQUES - UNC and UNF Threads

								Typical T	ightening To	orques Ibf. in			
	Threads Pe	er Inch	A Max.	A1 Min.				Unplated		Plated	d	Tensile Load	ds Ib. f.
Thread Size	UNC	UNF	(See Note 2)	(See Note 3)	B Max.	H Ref.	W Nom.	UNC	UNF	UNC	UNF	UNC	UNF
No.0	-	80	.138	.117	.0600	.044	.035	-	1.6	-	1.2	-	265
No.1	64	72	.168	.143	.0730	.054	.050	2.6	2.9	1.9	2.1	390	390
No.2	56	64	.197	.168	.0860	.064	.050	4.4	4.8	3.3	3.6	555	555
No.3	48	56	.226	.193	.0990	.073	¹ / ₁₆	6.7	8.5	5.0	6.3	725	725
No.4	40	48	.255	.218	.1120	.083	¹ / ₁₆	8.9	10.0	6.6	7.5	960	1,040
No.5	40	44	.281	.240	.1250	.090	⁵ / ₆₄	13.0	14.0	9.0	10.0	1,260	1,310
No.6	32	40	.307	.263	.1380	.097	⁵ / ₆₄	16.0	19.0	12.0	14.0	1,440	1,620
No.8	32	36	.359	.311	.1640	.112	³ / ₃₂	30.0	32.0	22.0	24.0	2,220	2,240
No.10	24	32	.411	.359	.1900	.127	1/8	44.0	51.0	33.0	38.0	2,780	3,180
1/4	20	28	.531	.480	.2500	.161	⁵ / ₃₂	100.0	120.0	75.0	90.0	5,070	5,790
⁵ / ₁₆	18	24	.656	.600	.3125	.198	³ / ₁₆	210.0	240.0	157.0	180.0	8,350	9,250
³ / ₈	16	24	.781	.720	.3750	.234	⁷ / ₃₂	380.0	430.0	285.0	322.0	12,400	14,000
⁷ / ₁₆	14	20	.844	.781	.4375	.234	1/4	600.0	680.0	450.0	510.0	16,900	18,900
1/2	13	20	.938	.872	.5000	.251	⁵ / ₁₆	930.0	1050.0	697.0	787.0	22,800	25,600
⁵ / ₈	11	18	1.188	1.112	.6250	.324	³ / ₈	1800.0	2000.0	1350.0	1500.0	36,000	40,800
³ / ₄	10	16	1.438	1.355	.7500	.396	1/2	3200.0	3560.0	2400.0	2670.0	53,200	59,300
⁷ /8	9	14	1.688	1.604	.8750	.468	⁹ / ₁₆	5400.0	6000.0	4050.0	4500.0	73,500	81,000
1	8	12	1.938	1.841	1.0000	.540	⁵ / ₈	8200.0	8900.0	6150.0	6675.0	96,300	106,000

ALL DIMENSIONS IN INCHES.

MECHANICAL PROPERTIES

Material Unbrako High Grade Alloy Steel

Heat Treatment Rc 39-43 **Shear Strength** 96,000 lbf/in²

Min. Elongation 9%

NOTES:

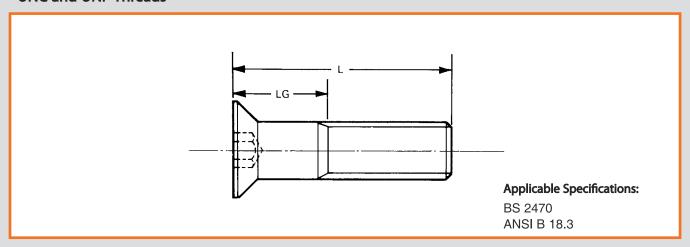
1. For overall and thread lengths see page 26.

2. A - Maximum theoretical sharp corner.

3. A1 - Absolute minimum head diameter.

4. da - Transition diameter.

5. Thread Class: 3/


6. Working Temperature: -50°C +300°C

7. Torques calculated in accordance with VDI 2230 "Systematic calculation of high duty bolted joints" with σ 0.2 = 100 K.S.I. and μ = 0.125 for plain finish and μ = 0.094 for plated.

N.B. Because of their head configurations, countersunk head screw tensile loads, are based on 160,000 lbf/in².

- UNC and UNF Threads

THREAD LENGTHS FOR STANDARD SCREW DIAMETERS - UNC and UNF Threads

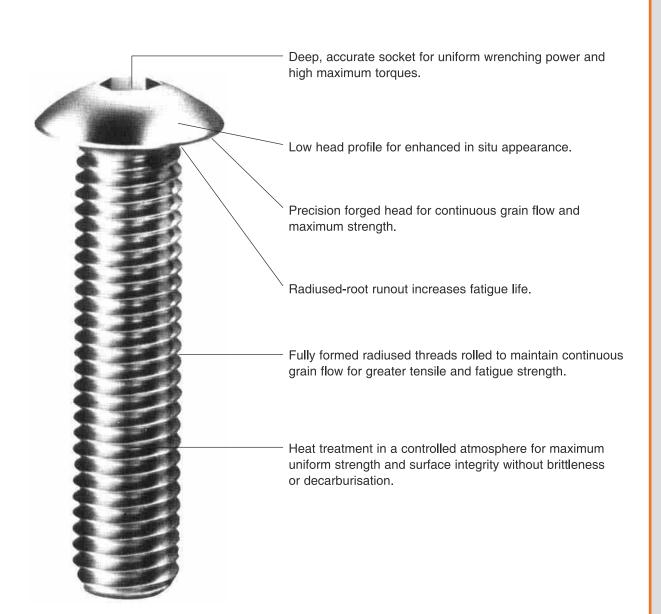
									Le	ength 'L'									
	3/4	7/8	1	1 1/4	1 ¹ /2	1 ³ /4	2	2 1/4	21/2	23/4	3	3 1/4	31/2	33/4	4	4 1/4	41/2	43/4	5
Thread Size									Grip L	.ength `L	G [′]	'							
Nº 0	0.25	0.25	0.50	0.75															
Nº 1		0.25	0.25	0.62	0.88														
Nº 2		0.25	0.25	0.62	0.88	1.12													
Nº 3		0.25	0.25	0.62	0.88	1.12	1.38												
Nº 4				0.50	0.50	1.00	1.00	1.50											
Nº 5				0.50	0.50	1.00	1.00	1.50											
Nº 6				0.50	0.50	1.00	1.00	1.50	1.50	2.00									
Nº 8				0.38	0.38	0.88	0.88	1.38	1.38	1.88	1.88	2.38							
Nº 10					0.62	0.62	1.12	1.12	1.62	1.62	2.12	2.12	2.62	2.62	3.12				
1/4						0.75	0.75	1.25	1.25	1.75	1.75	2.25	2.25	2.75	2.75	3.25	3.25	3.75	3.75
⁵ / ₁₆							0.88	0.88	1.38	1.38	1.88	1.88	2.38	2.38	2.88	2.88	3.38	3.38	3.88
3/8								1.00	1.00	1.50	1.50	2.00	2.00	2.50	2.50	3.00	3.00	3.50	3.50
⁷ / ₁₆									1.12	1.12	1.62	1.62	2.12	2.12	2.62	2.62	3.12	3.12	3.62
1/2		Sizes	shorter						1.00	1.00	1.00	1.75	1.75	1.75	2.50	2.50	2.50	3.25	3.25
⁵ / ₈	tha		e listed									1.50	1.50	1.50	2.25	2.25	2.25	3.00	3.00
3/ ₄	be threaded to head.			ead.									1.50	1.50	1.50	1.50	2.50	2.50	2.50
⁷ / ₈														1.50	1.50	1.50	1.50	2.50	2.50
1															1.50	1.50	1.50	1.50	2.50

ALL DIMENSIONS IN INCHES.

Length 'L' Tolerance											
Length											
Thread Size	To 1" inclusive	1" to 21/2" inclusive2	1/2" to 6" inclusive	Over 6"							
Nº 0 - 3/8"	0.030"	0.040"	0.060"	0.120"							
7/16" - 3/4"	0.030"	0.060"	0.080"	0.120"							
⁷ /s" - 1"	0.050"	0.100"	0.140"	0.200"							

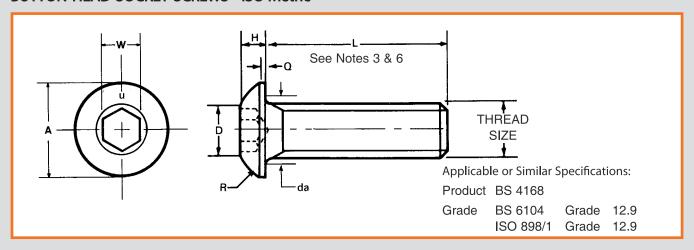
NOTES:

- 1. Dimensions and tightening information on Page 25.
- **2.** Tolerance on the grip length LG shall be $+0 2^{1/2}$ pitches.


BUTTON HEAD SOCKET SCREWS

Unbrako button head screws are ideally suited for use in materials too thin to countersink and in non-critical loading applications. Their low head profile gives them smooth, aesthetic appearance, and their deep accurate sockets ensure non-slip wrench engagement to prevent marring of the surface in which they are installed

Unbrako button head screws are made from high grade alloy steel and every manufacturing operation is closely controlled. Heads are forged for greater strength and full formed radius-root rolled threads assure close tolerances, maximum strength and superior fatigue resistance. Deep accurate sockets allow full tightening, and customised heat treatment of each heat of steel ensures maximum strength and hardness without brittleness.


Unbrako button head screws are available in plain or plated finishes. Stainless steel screws are also available.

Unbrako flange button head screws in Metric are also available. Please refer to our separate brochure for technical data.

BUTTON HEAD SOCKET SCREWS - ISO Metric

DIMENSIONS AND TIGHTENING TORQUES - ISO Metric Threads

									Ma	ximum Tigh	tening Torqu	ies	
									Unpl	lated	Pla	ted	
Thread Size	Pitch	A Max.	da Max.	D Max.	Н Мах.	Q Max.	R Ref.	W Nom.	Nm	lbf.in.	Nm	lbf.in.	kN
M3	0.50	5.70	3.60	3.31	1.65	.38	3.00	2.0	1.4	12	1.1	9	5.28
M4	0.70	7.60	4.70	3.93	2.20	.38	4.20	2.5	3.4	30	2.6	22	9.22
M5	0.80	9.50	5.70	4.50	2.75	.50	5.20	3.0	6.8	60	5.1	45	14.90
M6	1.00	10.50	6.80	5.90	3.30	.80	5.60	4.0	11.0	97	8.3	73	21.10
M8	1.25	14.00	9.20	7.00	4.40	.80	7.50	5.0	28.0	248	21.0	186	38.40
M10	1.50	17.50	11.20	8.20	5.50	.80	10.00	6.0	55.0	486	41.0	363	60.90
M12	1.75	21.00	13.70	10.50	6.60	.80	11.00	8.0	95.0	840	71.0	630	88.50

ALL DIMENSIONS IN MILLIMETRES.

MECHANICAL PROPERTIES

Material Unbrako High Grade Alloy Steel

Heat Treatment Rc 39-44
Shear Strength 630 N/mm²
Min. Elongation 9%

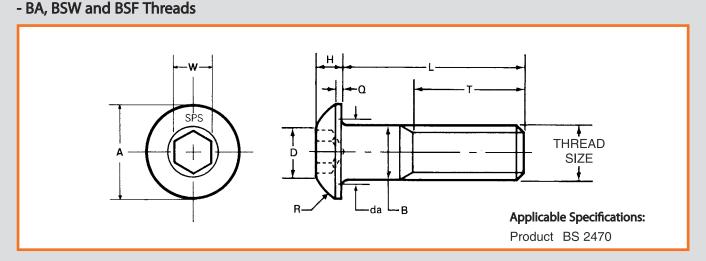
NOTES:

1. Thread Class: 4g 6g

2. da - Transition diameter.

3. Full thread length to within 21/2 pitches of head.

4. Working Temperature: -50°C +300°C


5. Torques calculated in accordance with VDI 2230 "Systematic calculation of high duty bolted joints" with σ 0.2 = 720 N/mm² and μ = 0.125 for plain finish and μ = 0.094 for plated.

6. Length tolerance = ± 0.25 mm.

N.B. Because of their head configurations, button head screws may not meet the minimum ultimate tensile load for property class 12.9, specified in table 6 OF BS 6104: Part 1: 1981. They are nevertheless required to meet the other material and property requirements for property class 12.9 in BS 6104: Part 1.

BUTTON HEAD SOCKET SCREWS

DIMENSIONS AND TIGHTENING TORQUES - BA, BSW and BSF Threads

														kimum Ti Torques I	ghtening bf. in.			
	Threa Per la							L (See			T Min. (See		Unpl	ated	Pla	ted		e Load b. f.
Thread Size	В	A	A Max.	B Max.	da Max.	D Max.	H Max.	Note 1)	Q Max.	R Ref.	Note 1)	W Nom.	В	A	B/	١	В	A
6BA	47	.9	.213	.1102	.1302	.102	.059	.500	.015	.140	.500	1/16		7		5.5	10	050
5BA	43	.1	.238	.1260	.1460	.131	.066	.500	.015	.146	.500	⁵ / ₆₄		11		8.0	10	390
4BA	38	.5	.262	.1417	.1617	.131	.073	.625	.015	.163	.625	⁵ / ₆₄		15		12.0	10	760
зва	34	.8	.312	.1614	.1914	.149	.087	.750	.015	.190	.750	3/32		23		17.0	23	310
2BA	31	.4	.361	.1850	.2150	.186	.101	1.000	.020	.218	1.000	1/8		35	2	27.0	30	070
0BA	25	.4	.437	.2362	.2762	.232	.132	1.000	.031	.254	1.000	⁵ / ₃₂		75	į	56.0	50	070
	BSW	BSF													BSW	BSF	BSW	BSF
³ / ₁₆	24	32	.361	.1875	.2175	.186	.101	1.000	.020	.218	1.000	1/8	32	36	24	27	2730	3120
1/4	20	26	.437	.2500	.2900	.232	.132	1.000	.031	.254	1.000	⁵ / ₃₂	80	89	60	67	5130	5710
⁵ / ₁₆	18	22	.547	.3125	.3520	.268	.166	1.000	.031	.314	1.000	³ / ₁₆	165	177	124	133	8440	9080
														lbf.	ft.			
³ / ₈	16	20	.656	.3750	.4150	.304	.199	1.500	.031	.373	1.500	7/ ₃₂	24	26	18	19	12500	13400
⁷ / ₁₆	14	18	.750	.4375	.4780	.340	.232	1.500	.031	.417	1.500	1/4	39	42	29	31	17100	18500
1/2	12	16	.875	.5000	.5600	.414	.265	2.000	.046	.486	2.000	^{5/} 16	58	63	43	47	22200	24300
⁵ / ₈	11	14	1.000	.6250	.6850	.486	.331	2.000	.062	.528	2.000	³ / ₈	118	126	88	95	36400	38900
³ / ₄	10	12	1.218	.7500	.8100	.613	.398	2.000	.078	.670	2.000	1/2	210	220	157	165	53700	56400

ALL DIMENSIONS IN INCHES.

L	Length 'L' Tolerance											
Screws Over	Up to and including	Tolerance										
-	1"	±0.10"										
1"	2"	+0.031" -0.016"										
2"	6"	±0.031"										
6"	-	±0.062"										

MECHANICAL PROPERTIES

Material Unbrako High Grade Alloy Steel

Heat Treatment Rc 39-44 Shear Strength 96,000 lbf/in²

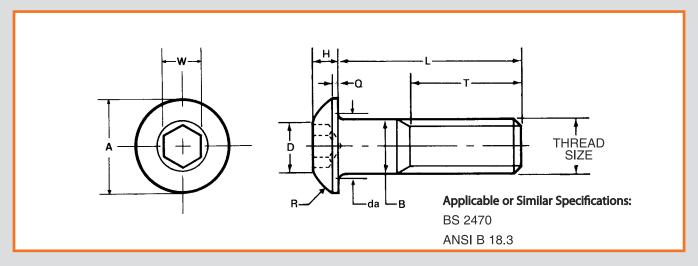
Min. Elongation 9%

NOTES:

- 1. Thread Length Screw lengths equal to or shorter than listed in column 'L' will be threaded to head. For screw lengths longer than 'L', 'T' designates the minimum thread length. The maximum thread length is not specified.
- 2. Thread Class: BA Close

BSW and BSF - Medium

3. da - Transition diameter.


4. Working Temperature: -50°C +300°C

N.B. Because of their head configurations, button head screws tensile loads, are based on 160,000 lbf/in².

BUTTON HEAD SOCKET SCREWS

- UNC and UNF Threads

DIMENSIONS AND TIGHTENING TORQUES - UNC and UNF Threads

													Maxin		tening To . in.	rques		
	Thre Per li							L (See			T Min. (See		Unpla	ated	Plat	ted		
Thread Size	UNC	UNF	A Max.	В Мах.	da Max.	D Max.	Н Мах.	Note 1)	Q Max.	R Ref.	Note 1)	W Nom.	UNF	UNC		UNC	UNC	UNF
N°4	40	48	.213	.1120	.1320	.102	.059	.500	.015	.140	.500	¹ / ₁₆	8.9	10	6.6	7.5	960	1040
N°5	40	44	.238	.1250	.1450	.131	.066	.500	.015	.146	.500	⁵ / ₆₄	13.0	14	9.7	10.0	1260	1310
N°6	32	40	.262	.1380	.1580	.131	.073	.625	.015	.163	.625	⁵ / ₆₄	16.0	19	12.0	14.0	1440	1620
N°8	32	36	.312	.1640	.1940	.149	.087	.750	.015	.190	.750	³ / ₃₂	30.0	32	22.0	24.0	2220	2240
N°10	24	32	.361	.1900	.2200	.186	.101	1.000	.020	.218	1.000	1/8	44.0	51	33.0	38.0	2780	3180
1/4	20	28	.437	.2500	.2900	.232	.132	1.000	.031	.254	1.000	⁵ / ₃₂	100.0	120	75.0	90.0	5070	5790
⁵ / ₁₆	18	24	.547	.3125	.3520	.268	.166	1.000	.031	.314	1.000	³ / ₁₆	210.0	240	157.0	180.0	8350	9250
														lbf.	ft.			
3/8	16	24	.656	.3750	.4150	.304	.199	1.250	.031	.373	1.000	⁷ / ₃₂	380	430	285	322	12400	14000
⁷ / ₁₆	14	20	.750	.4375	.4780	.340	.232	1.500	.031	.417	1.500	1/4	600	680	450	510	16900	18900
1/2	13	20	.875	.5000	.5600	.414	.265	2.000	.046	.486	2.000	^{5/} 16	930	1050	697	787	22800	25600
⁵ / ₈	11	18	1.000	.6250	.6850	.486	.331	2.000	.062	.528	2.000	³ / ₈	1800	2000	1350	1500	36000	40800
³ / ₄	10	16	1.218	.7500	.8100	.613	.398	2.000	.078	.670	2.000	1/2	3200	3560	2400	2670	53200	59300

ALL DIMENSIONS IN INCHES.

Length `L' Tolerance								
Screws Over	Tolerance							
-	1"	±0.16"						
1"	2"	+0.031" -0.016"						
2"	6"	±0.031"						
6"	-	±0.062"						

MECHANICAL PROPERTIES

Material Unbrako High Grade Alloy Steel

Heat Treatment Rc 39-44 Shear Strength 96,000 lbf/in²

Min. Elongation 9%

NOTES:

- 1. Thread Length Screw lengths equal to or shorter than listed in column 'L' will be threaded to head. For screw lengths longer than 'L', 'T' designates the minimum thread length. The maximum thread length is not specified.
- 2. Thread Class: 3A
- **3. da** Transition diameter.
- **4. Max. Working Temperature:** -50°C +300°C
- 5. Torques calculated in accordance with VDI 2230 "Systematic calculation of high duty bolted joints" with σ 0.2 = 100 K.S.I. and μ = 0.125 for plain finish and μ = 0.094 for plated.

N.B. Because of their head configurations, button head screws tensile loads, are based on 160,000 lbf/in².

FLANGE BUTTON HEAD SOCKET SCREWS

Unbrako flange button head screws allow the covering of large diameter holes in sheet metal. As the large underhead surface pressure by area is low, this fastener can also be used with softer materials without harm or damage.

Flange button heads ideal to fix strips, cover plates and sheet metal housings.

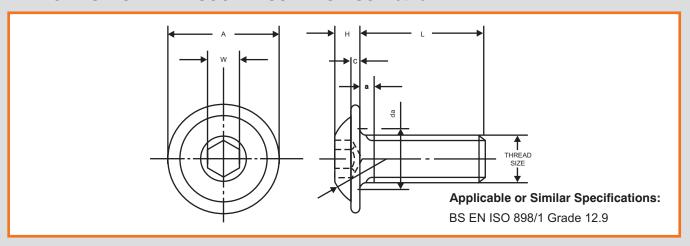
The redius on the button head presents a streamlined profile, virtually eliminating the sharp edges which could occur with a bolt and washer assembly.

Unbrako flange button head scews are available with metric threads and

Deep, accurate socket for uniform wrenching power and high maximum torques.

Flange facilities greater load spread and streamlined appearance

Precision forged head for continuous grain flow and maximum strength


Rediused root runout increases fatigue life

Fully formed radiused threads rolled to maintain continuous grain flow for greater tensile and fatigue strength

Heat treated in a controlled atmosphere for maximum uniform strength and surface integrity without brittleness or decarburisation

FLANGE BUTTON HEAD SOCKET SCREWS - ISO Metric

DIMENSIONS AND TIGHTENING TORQUES - ISO Metric Threads

								Recomr Tightenin Unpl	g Torques	Tensile Loads
Thread Size	Pitch	A Max.	da Max.	C Max.	H Max.	R Ref.	W Nom.	Nm	lbf. in.	kN
М3	0.50	7.12	3.60	0.70	1.65	3.00	2.00	1.96	18	5.23
M4	0.70	9.29	4.70	0.80	2.20	4.20	2.50	4.52	40	9.13
M5	0.80	11.40	5.70	0.90	2.75	5.20	3.00	9.08	80	14.77
M6	1.00	13.59	6.80	1.20	3.30	5.60	4.00	15.40	138	20.90
M8	1.25	17.00	9.20	1.30	4.40	7.50	5.00	36.80	330	38.06
M10	1.50	20.80	11.20	1.75	5.50	10.00	6.00	72.30	650	60.32
M12	1.75	24.69	13.70	2.40	6.60	11.00	8.00	126.00	1134	87.67

ALL DIMENSIONS IN MILLIMETERS.

Length 'L' Tolerance								
Screws Over	Tolerance							
-	1"	±0.16"						
1"	2"	+0.031" -0.016"						
2"	6"	±0.031"						
6"	-	±0.062"						

MECHANICAL PROPERTIES

Material Unbrako High Grade Alloy Steel

Heat Treatment Rc 39-44

NOTES:

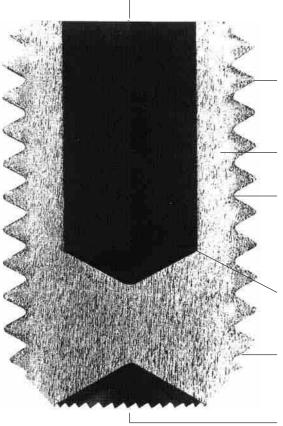
- 1. Thread Class: 4g 6g
- 2. da = Transition diameter.
- 3. Full thread length to within 2½ pitches of head.
- 4. Working Temperature: -50°C +300°C
- **5.** Length tolerance =±0.25mm.
- **6.** Torques calculated in accordance with VDI 2230 "Systematic calculation of high duty bolted joints with σ 0.2 = 720 N/mm 2 and μ = 0.125 for plain finish.

N.B. Because of their head configurations, flange button head screws may not meet the minimum ultimate tensile load for property class 12.9 specified in table 6 of BS EN ISO 898/1. They are nevertheless required to meet the other material and property requirements for property class 12.9 in BS EN ISO 898/1.

SOCKET SET SCREWS

In contrast to other types of fasteners, set screws are primarily used in compression. They must hold fast against three types of forces, torsional (rotational), axial (lateral movement) and vibrational. To be effective, socket set screws should produce a strong clamping action which resists the relative motion between the assembled parts, because of the compression developed by tightening the set screw. Since holding power is proportional to seating torque, the tighter you can seat the screw, the higher the compression force will be.

But there is a limit to how much you can tighten the average set screw. If you're not careful, you'll ream or crack the socket, or strip the threads. So you're never sure if the screw is tight enough, and whether it will stay tight.


But you can be sure that Unbrako set screws will 'stay put' because you can tighten them until the key twists off, with no damage to the screws. Unbrako recommend tightening torques as much as 40% higher than other set screws, giving you extra holding power and additional safety and reliability.

Unbrako socket set screws hold tighter because

they are stronger than other set screws. The superior strength and dimensional uniformity of Unbrako set screws permit use of consistently higher seating torques than with other set screws. Consequently you can often save money because you can reduce the size or the number of set screws you require in your assembly.

Here are some of the reasons why Unbrako set screws are so strong and stay tight. Unbrako set screws are made of high grade alloy steel and heat treated to a minimum hardness of Rc 45. (Stainless steel set screws are available). Deep accurate sockets give more key engagement for extra wrenching areas. Radiused socket corners minimise points of weakness where cracks may start. Distribute stresses. Fully formed rolled threads provide greater strength and resistance to stripping. Controlled heat treatment assures uniform hardness without brittleness.

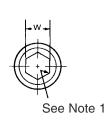
Unbrako socket set screws are available in knurled cup, cone, half dog, flat and plain cup point styles in plain or plated finishes. Stainless steel set screws are available in plain cup points only.

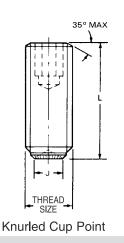
Accurate control of socket depth gives you more wrench engagement than other screws; permits full tightening without reaming or cracking the socket.

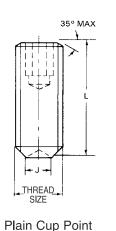
Threads are formed with the closest possible fit without selective assembly; give maximum cross-section for strength.

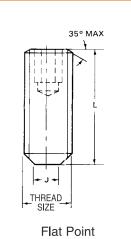
Heat treated alloy steel for maximum strength without brittleness or decarburisation.

Controlled root radius doubles fatigue life of threads by reducing stress concentrations and avoiding sharp corners where failures may start. Contour following flow lines of rolled threads provide extra strength and preventing stripping.


Radiused socket corners prevent cracking as Unbrako socket set screws develop high tightening torques.


Accurate plating, when required, insures precision fit and maximum corrosion protection.


Counterbore knurled cup point - exclusive Unbrako self-locking point provides greater vibrational holding power than other knurled points.



SOCKET SET SCREWS - ISO Metric

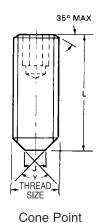
DIMENSIONS AND TIGHTENING TOROUES - ISO Metric Threads

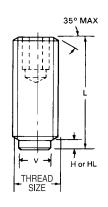
DIVILITATIONS /	MENSIONS AND TIGHTENING TORQUES - ISO Metric Threads Knurled Cup Point Plain Cup Flat Point								
			Kiluilea	cup rollit	riaiii	Cup	riati	Ollit	
Thread Size	Pitch	W Nom.	J Max.	L Minimum Preferred	J Max.	L Minimum Preferred	J Max.	L Minimum Preferred	
МЗ	0.50	1.5	1.30	3.0	1.4	3.0	2.0	3.0	
M4	0.70	2.0	2.10	3.0	2.0	3.0	2.5	3.0	
M5	0.80	2.5	2.40	4.0	2.5	4.0	3.5	4.0	
M6	1.00	3.0	3.30	5.0	3.0	4.0	4.0	4.0	
M8	1.25	4.0	4.30	6.0	5.0	5.0	5.5	5.0	
M10	1.50	5.0	5.25	8.0	6.0	6.0	7.0	6.0	
M12	1.75	6.0	6.60	10.0	8.0	8.0	8.5	8.0	
(M14)	2.00	6.0	8.10	12.0	9.0	10.0	10.0	10.0	
M16	2.00	8.0	9.10	14.0	10.0	12.0	12.0	12.0	
(M18)	2.50	10.0	10.30	16.0	12.0	14.0	13.0	12.0	
M20	2.50	10.0	11.50	18.0	14.0	16.0	15.0	14.0	
(M22)	2.50	12.0	12.65	20.0	16.0	18.0	17.0	16.0	
M24	3.00	12.0	14.65	20.0	16.0	20.0	18.0	20.0	

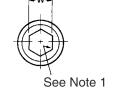
ALL DIMENSIONS IN MILLIMETRES. SIZES IN BRACKETS ARE NON-PREFERRED STANDARDS.

MECHANICAL PROPERTIES

Material Unbrako High Grade Alloy Steel **Hardness** Rc 45 Minimum


NOTES:

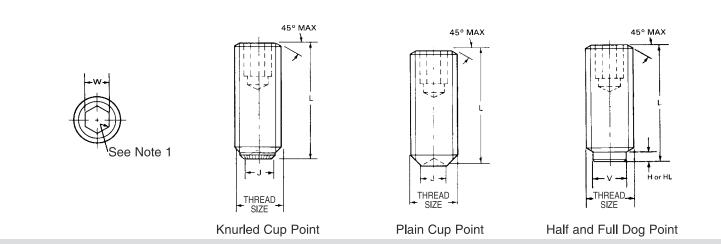

- 1. Corner of recess must have fillets to minimise stress concentrations.
- 2. Thread Class: 4g
 - -50°C +300°C


6g

- 3. Working Temperature: 4. Screws with length L or below will have half dog point H.
- Screws with lengths above L will have full dog point HL. 5. Torques calculated at 75% of the torsional shear strength of the
- respective Unbrako wrenches. 6. For torque and axial holding power see pages 36 and 37.
- 7. Micro size Plain Cup Point are shown on page 38.

	Dog Point
--	-----------

	Cone Point			Dog	Point		Maximum Tightening Torque		
J Max.	L Minimum Preferred	y° ± 2° 90° for these Lengths and Over; and 120° Under	L (See Note 4)	H Half Dog Max.	HL Full Dog Max.	V Max.	Nm	lbf.in.	
Sharp	4.0	4.00	5.00	1.00	1.75	2.00	0.87	7.7	
Sharp	4.0	5.00	6.00	1.25	2.25	2.50	2.20	19.5	
Sharp	5.0	6.00	6.00	1.50	2.75	3.50	4.60	41.0	
1.5	6.0	8.00	8.00	1.75	3.25	4.00	7.80	69.0	
2.0	6.0	10.00	10.00	2.25	4.30	5.50	18.00	160.0	
2.5	8.0	12.00	12.00	2.75	5.30	7.00	36.00	320.0	
3.0	10.0	14.00	16.00	3.25	6.30	8.50	62.00	550.0	
4.0	12.0	14.00	20.00	3.80	7.36	10.00	62.00	550.0	
4.0	14.0	18.00	20.00	4.30	8.36	12.00	150.00	1330.0	
5.0	16.0	20.00	25.00	4.80	9.36	13.00	290.00	2570.0	
5.0	18.0	22.00	25.00	5.30	10.36	15.00	290.00	2570.0	
6.0	20.0	28.00	30.00	5.80	11.43	17.00	475.00	4200.0	
6.0	20.0	28.00	30.00	6.30	12.43	18.00	475.00	4200.0	


Length \L' Tolerance								
Screws Over	Up to and including	Tolerance						
-	Screw Diameter	+0.25 -0.00						
Screw Diameter	50	±0.25						
50	80	±0.50						
80	120	±0.70						
120	250	±0.80						

Applicable or Similar Specifications:						
	BS 4168					
Flat Point	D I N 913					
	ISO 4026					
Cone Point	DIN 914					
	ISO 4027					
Dog Point	D I N 915					
	ISO 4028					
Plain Cup	D I N 916					
	ISO 4029					

Jnbrako

SOCKET SET SCREWS

- UNC, UNF, BA, BSW and BSF Threads

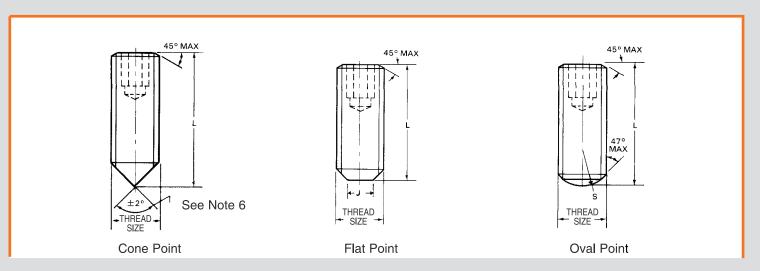
DIMENSIONS AND TIGHTENING TORQUES - UNC, UNF, BA, BSW and BSF Threads

	Unified Threads		BA TI	nreads		British Threads			
Thread	Threads Per Inch		Thread	Threads	Thread	Threads P	er Inch		
Size	UNC	UNF	Size	Per Inch	Size	BSW	BSF	W Nom.	J Max.
N°0		80						.028	.033*
N°1		72						.035	.040*
N°2	56	64	8BA	59.1				.035	.047*
N°3	48	56	7BA	52.9				.050	.54*
N°4	40	48	6BA	47.9				.050	.061
N°5	40	44	5BA	43.1	1/ ₈	40		1/ ₁₆	.067
N°6	32	40	4BA	38.5				1/ ₁₆	.074
N°8	32	36	ЗВА	34.8	5/ ₃₂	32		5/ ₆₄	.087
N°10	24	32	2BA	31.4	3/ ₁₆	24	32	3/ ₃₂	.098
N°12	24	28	1BA	28.2				3/ ₃₂	.113
1/4	20	28	0BA	25.4	1/4	20	26	1/8	.130
5/ ₁₆	18	24			^{5/} 16	18	22	5/ ₃₂	.169
3/8	16	24			3/ ₈	16	20	3/ ₁₆	.206
7/ ₁₆	14	20			7/ ₁₆	14	18	7/ ₃₂	.242
1/2	13	20			1/2	12	16	1/4	.281
9/16	12	18			^{9/} 16	12	16	1/4	.319
5/8	11	18			5/ ₈	11	14	5/ ₁₆	.362
3/4	10	16			3/ ₄	10	12	3/ ₈	.440
7/8	9	14			7/ ₈	9	11	1/2	.518
1	8	12			1	8	10	9/ ₁₆	.594
11/8	7	12			1 1/ ₈	7	9	9/ ₁₆	.675
11/4	7	12			11/4	7	9	5/ ₈	.758
13/ ₈	6	12			13/ ₈	6	8	5/ ₈	.833
11/2	6	12			11/2	6	8	3/4	.911

ALL DIMENSIONS IN INCHES

MECHANICAL PROPERTIES

Material Unbrako High Grade Alloy Steel **Hardness**


Rc 45 Minimum

- 1. Corner of recess must have fillets to minimise stress concentrations.
- BA Close BSW and BSF Medium UNC and UNF 3A 2. Thread Class:

+300°C -50°C

- 3. Working Temperature:
- 4. *denotes Plain Cup only.
- 5. For torque and axial holding power see pages 38 and 39.
- 6. Inclined angle is 90°, except when length equals diameter or less when inclined angle is 118°.

Plain & KCP			Dog Point			Cone Point	Flat Point	Oval F	oint
L Minimum Preferred	H Half Dog Max.	L Min. Pref. Half Dog	HL Full Dog Max.	L Min. Pref. Full Dog	V Max.	L Minimum Preferred	L Minimum Preferred	L Minimum Preferred	S Max.
.062*	.017	.094	.033	.094	.040	.062	.062	.062	.057
.062*	.021	.094	.039	.094	.049	.062	.062	.062	.065
.062*	.024	.094	.048	.125	.057	.125	.094	.094	.072
.094*	.027	.125	.054	.125	.066	.125	.094	.094	.088
.094	.030	.125	.066	.188	.075	.125	.094	.094	.093
.094	.033	.125	.070	.188	.083	.125	.094	.094	.104
.094	.038	.125	.080	.188	.092	.125	.094	.094	.119
.094	.043	.125	.090	.250	.109	.125	.094	.125	.135
.094	.049	.125	.100	.250	.127	.125	.125	.125	.151
.188	.059	.188	.120	.250	.144	.188	.188	.188	.166
.188	.067	.188	.135	.312	.156	.188	.188	.188	.197
.250	.082	.250	.166	.375	.203	.188	.188	.188	.244
.250	.099	.375	.198	.437	.250	.250	.250	.250	.291
.250	.114	.375	.229	.500	.296	.312	.250	.250	.338
.312	.130	.375	.260	.500	.343	.375	.312	.312	.385
.375	.148	.437	.291	.625	.390	.437	.375	.375	.432
.437	.164	.437	.323	.750	.468	.500	.437	.437	.479
.500	.196	.500	.385	.875	.562	.562	.500	.500	.573
.562	.227	.625	.448	1.000	.656	.625	.562	.625	.666
.625	.260	.750	.510	1.000	.750	.750	.625	.750	.760
.750	.291	.873	.573	1.500	.843	.875	.750	.750	.853
.875	.323	1.000	.635	1.500	.937	1.000	.875	.875	.948
1.000	.353	1.125	.697	1.750	1.031	1.000	1.000	1.000	1.062
1.000	.385	1.250	.760	1.750	1.125	1.000	1.250	1.250	1.156

Length `L' Tolerance								
Screws Over	Up to and including	Tolerance						
_	5/8"	±0.010"						
5/8"	2"	±0.020"						
2"	6"	±0.031"						
6"	-	±0.062"						

Applicable or Simila	ar Specifications:
UNC/UNF	BS 2470
	ANSI B 18.3
BA/BSW/BSF	BS 2470

SOCKET SET SCREWS

- Torsional and axial holding power - seated against steel shaft. Based on recommended seating torques. ISO Metric Threads

			Shaft dian Torsional	neter (shaft ha holding power	rdness Rc 15 to Nm	Rc 35)						
	Seating	Axial	1.4	1.6	1.8	2.0	3.0	4.0	5.0	6.0	8.0	10
Thread Size	Torque Nm	Holding Power (kN)										
M1.4	.10	.19	.13	.15	.17	.19	.29	.38	.48			
M1.6	.10	.22	.15	.18	.20	.22	.33	.44	.55	.66		
M1.8	.10	.25	.18	.20	.23	.25	.38	.50	.63	.75	1.0	
M2.0	.21	.29	.20	.23	.26	.29	.44	.58	.73	.87	1.2	1.5
M2.5	.60	.53		.42	.48	.53	.80	1.10	1.30	1.60	2.1	2.7
M2.6	.60	.56			.50	.56	.84	1.10	1.40	1.70	2.2	2.8
МЗ	.87	.71				.71	1.07	1.40	1.80	2.10	2.8	3.6
M4	2.20	1.70				1.70	2.60	3.40	4.30	5.10	6.8	8.5
M5	4.60	2.50					3.80	5.00	6.30	7.50	10.0	13.0
M6	7.80	4.20							11.00	13.00	17.0	21.0
M8	18.00	6.70								20.00	27.0	34.0
M10	36.00	9.30									37.0	47.0
M12	62.00	12.00										60.0
M14	62.00	15.00										
M16	150.00	18.00										
M18	290.00	21.00										
M20	290.00	23.00										
M22	475.00	26.00										
M24	475.00	29.00										
ALL DIMEN	ISIONS IN	MILLIMETR	ES									

UNC, UNF, BA, BSW and BSF Threads

		Axial	Shaft dia Torsional	meter (shaft ha Holding Powe	ordness Rc 15 to r lbf.in.	to Rc 35)						
	Seating	Holding	¹ /16	3/32	1/8	5/32	3/16	7/32	1/4	5/16	3/8	7/16
Thread Size	Torque lbf. in.	Power (lbf.)										
N°0	1.0	50	1.5	2.3	3.1	3.9	4.7	5.4	6.2			
N°1	1.8	65	2.0	3.0	4.0	5.0	6.1	7.1	8.1	10.0		
N°2/8BA	1.8	85	2.6	4.0	5.3	6.6	8.0	9.3	10.6	13.2	16.0	
N°3/7BA	5.0	120	3.2	5.6	7.5	9.3	11.3	13.0	15.0	18.7	22.5	26.3
N°4/6BA	5.0	160		7.5	10.0	12.5	15.0	17.5	20.0	25.0	30.0	35.0
N°5/5BA	10.0	200			12.5	15.6	18.7	21.8	25.0	31.2	37.5	43.7
N°6/4BA	10.0	250				19.0	23.0	27.0	31.0	39.0	47.0	55.0
N°8/3BA	20.0	385				30.0	36.0	42.0	48.0	60.0	72.0	84.0
N°10/2BA	36.0	540					51.0	59.0	68.0	84.0	101.0	118.0
1/ ₄ /0BA	87.0	1,000							125.0	156.0	187.0	218.0
5/ ₁₆	165.0	1,500								234.0	280.0	327.0
3/ ₈	290.0	2,000									375.0	437.0
7/ ₁₆	430.0	2,500										545.0
1/2	620.0	3,000										
9/ ₁₆	620.0	3,500										
5/ ₈	1,325.0	4,000										
3/4	2,400.0	5,000										
7/ ₈	5,200.0	6,000										
1	7,200.0	7,000										

ALL DIMENSIONS IN INCHES.

NOTES:

Tabulated axial and torsional holding powers are typical strengths and should be used accordingly, with specific safety factors appropriate to the given application and load conditions.

12	14	16	18	20	25	30	40	50	60	70	80	90	100
3.2													
3.4	3.9	4.5											
4.3	5.0	5.7	6.4	7.1									
10.0	12.0	14.0	15.0	17.0	21								
15.0	18.0	20.0	23.0	25.0	31	38							
25.0	29.0	34.0	38.0	42.0	53	63	84						
40.0	47.0	54.0	60.0	67.0	84	101	134	168	201				
56.0	65.0	74.0	84.0	93.0	116	140	186	233	279				
72.0	84.0	96.0	108.0	120	150	180	240	300	360	420			
90.0	105.0	120.0	135.0	150.0	188	225	300	375	450	525	600		
	126.0	144.0	162.0	180.0	225	270	360	450	540	630	720	810	
		168.0	189.0	210.0	263	315	420	525	630	735	840	945	1050
			207.0	230.0	288	345	460	575	690	805	920	1040	1150
				260.0	325	390	520	650	780	910	1040	1170	1300
					363	435	580	725	870	1020	1160	1310	1450

1/2	9/16	5/8	3/4	7/8	1	1 ¹ /4	1 ¹ /2	1	2	2 1/2	3	3 1/2	4
40.0													
40.0													
50.0	56.2	62											
62.0	70.0	78	94	109									
96.0	108.0	120	144	168	192								
135.0	152.0	169	202	236	270	338							
250.0	281.0	312	375	437	500	625	750						
375.0	421.0	468	562	656	750	937	1125	1310	1500				
500.0	562.0	625	750	875	1000	1250	1500	1750	2000				
625.0	702.0	780	937	2095	1250	1560	1875	2210	2500	3125			
750.0	843.0	937	1125	1310	1500	1875	2250	2620	3000	3750	4500		
	985.0	1090	1310	1530	1750	2190	2620	3030	3500	4370	5250	6120	
		1250	1500	1750	2000	2500	3000	3500	4000	5000	6000	7000	8000
			1875	2190	2500	3125	3750	4375	5000	6250	7500	8750	10000
				2620	3000	3750	4500	5250	6000	7500	9000	10500	12000
					3500	4375	5250	6120	7000	8750	10500	12250	14000

Good results have been obtained with a factor of 1.5-2.0 under static load conditions (i.e. where a collar is supporting a vertical load on a post) and of 4.0-8.0 for various dynamic conditions. Values in bold type in the chart indicate recommended set screw sizes on the basis that screw diameter should be roughly one-half shaft diameter.

Unbrako®

SOCKET SET SCREWS

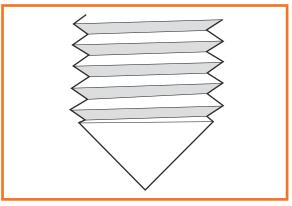
- ISO Metric Microsize Plain Cup Point

DIMENSIONS AND TIGHTENING TORQUES - ISO Metric Threads

				Range of Le	ngth `Ľ		Maximum Tighter	ning Torques
Thread Size	Pitch	D Max.	J Max.	Min.	Max.	W Nom.	Nm	lbf. in.
M1.4	0.30	0.90	0.70	2.5	5.0	0.71	0.10	0.9
M1.6	0.35	1.00	0.80	2.5	5.0	0.71	0.10	0.9
M1.8	0.35	1.20	0.90	2.5	5.0	0.71	0.10	0.9
M2.0	0.40	1.32	1.00	2.5	10.0	0.89	0.21	1.8
M2.5	0.45	1.75	1.20	3.0	10.0	1.27	0.60	5.3

ALL DIMENSIONS IN MILLIMETRES.

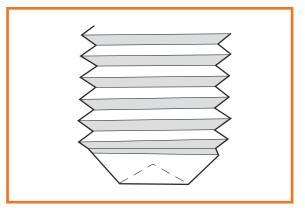
MECHANICAL PROPERTIES

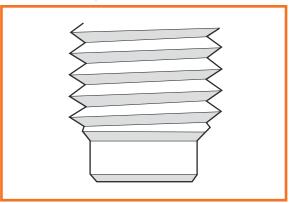

MaterialUnbrako High Grade Alloy SteelHardnessRc 45 Minimum

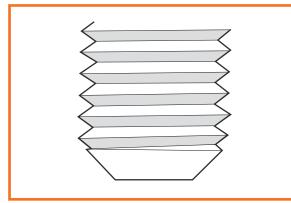
NOTES:

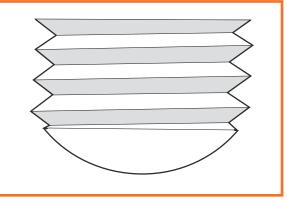

1. Thread Class: 4g 6g **2. Working Temperature:** -50°C +300°C

3. For torque and axial holding power see pages 38 & 39.




Cone Point - Use for permanent location of parts. Deep penetration gives highest axial and torsional holding power. Unbrako cone point set screws are ideally suited for use as pivots and for applications where fine adjustments are necessary.


Knurled Cup Point - Use for quick, permanent location of gears, collars, and pulleys on shafts. Exclusive counter-clockwise knurl prevents Unbrako screws from loosening even in poorly tapped holes. Resists severe vibration. On all set screws over 1/4" the cup is counterbored to provide maximum holding power.


Plain Cup - Use against hardened shafts, in zinc, die castings and other soft materials where high tightening torques are impractical.

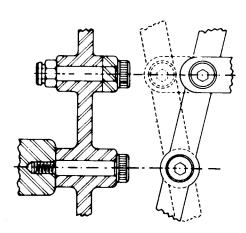
Half and Full Dog Point - Use for permanent location of one part to another. The point is usually spotted in a hole drilled in a shaft or on a flat surface milled on the shaft.

Flat Point - Use where parts must be frequently re-set, as it causes little or no damage to the part it bears against. Can be used against hardened shafts (usually with ground flat for better contact) and as adjusting screw. Preferred for thin wall thickness and on soft plugs.

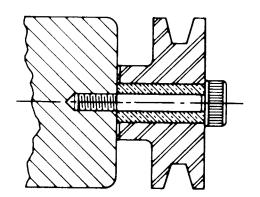
Oval Point - Use for frequent adjustment without deformation of the part it bears against, also for seating against an angular surface. Circular U-grooves or axial V-grooves sometimes put in shaft to permit rotational or longitudinal adjustment.

SOCKET HEAD SHOULDER SCREWS

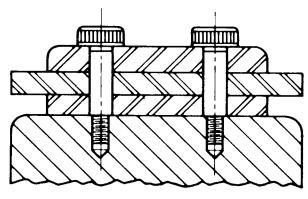
Unbrako shoulder screws are actually hardened shafts with a knurled head and threaded portion. The shoulder formed where the threads meet the larger diameter body acts as a stop when the screw is threaded into a tapped hole, permitting the screw to be used as a pivot, shaft, or stationary guide.


Unbrako shoulder screws are used to operate stripper plates and in pressure pads a wide variety of tool and die work. They are also used as shafts or pivots, holding pulleys, gears, cams and cam followers, ratchets and circular form tools. Stationary guide applications including locating pins in fixtures, latch stops, alignment of stationary members, linkage blocks, and stock guides in dies. Unbrako shoulder screws are especially advantageous in applications where the fastened part must be removed frequently. For instance, when the shoulder screw is used as a

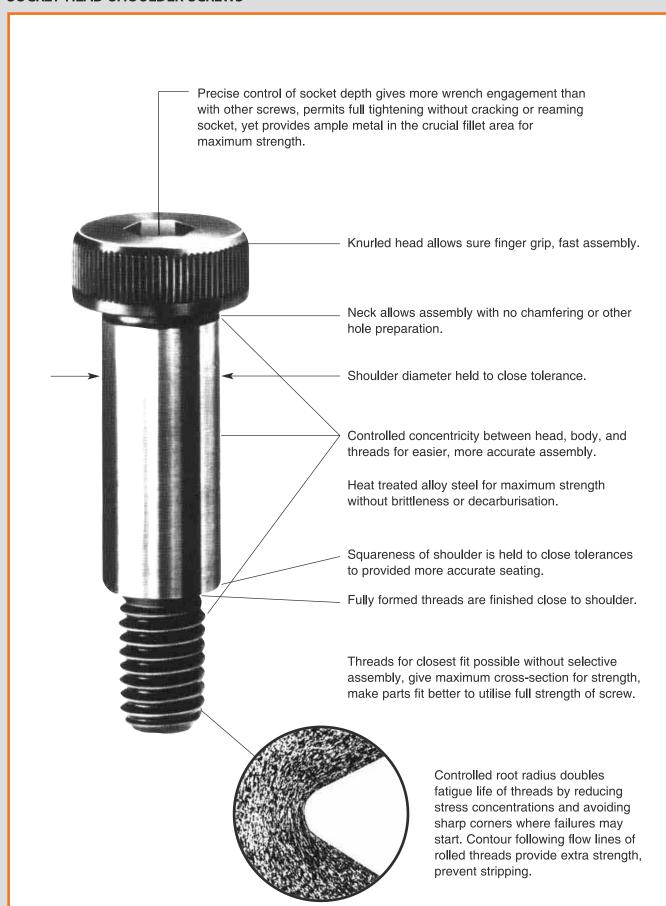
shaft for circular form tools, the screw can be removed to permit sharpening of the tool in a matter of seconds. Assembly is equally as fast.


Unbrako shoulder screws are made of high grade alloy steel and have knurled heads for sure gripping and quick assembly. The precision hexagon socket gives maximum wrench engagement to allow tightening to the full strength of the screw. Concentricity between body and threads is closely controlled, permitting easy, accurate assembly. Fully formed radius root threads ensure maximum tensile strength and resist stripping.

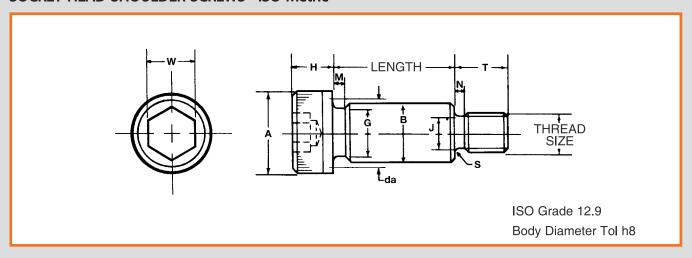
Finally, the precision tolerance on the shoulder provides close and accurate mating with the fastened components. Unbrako manufacture to a tolerance position closer than required by international standards.


APPLICATIONS

Moving Shaft or Pivot


Pulley Shaft Uses

Stationary Guide



SOCKET HEAD SHOULDER SCREWS

SOCKET HEAD SHOULDER SCREWS - ISO Metric

DIMENSIONS - ISO Metric Threads

				E	3								1	-	
Body Size	Thread Size	Pitch	A Max.	Max.	Min.	da Max.	G Max.	Н Мах.	J Max.	M Max.	N Max.	S Max.	Max.	Min.	W Nom.
6.00	M5	0.8	10.00	6.000	5.982	6.80	5.62	4.50	3.84	1.85	2.00	0.55	9.75	9.25	3.0
8.00	M6	1.0	13.00	8.000	7.978	9.20	7.62	5.50	4.56	1.85	2.50	0.65	11.25	10.75	4.0
10.00	M8	1.25	16.00	10.000	9.978	11.20	9.62	7.00	6.23	1.85	3.00	0.85	13.25	12.75	5.0
12.00	M10	1.50	18.00	12.000	11.973	14.20	11.62	9.00	7.89	1.85	3.50	1.05	16.25	15.75	6.0
16.00	M12	1.75	24.00	16.000	15.973	18.20	15.62	11.00	9.54	1.85	4.00	1.15	18.25	17.75	8.0
18.00	M14	2.00	27.00	18.000	17.973	20.20	17.62	12.00	11.20	2.50	4.50	1.25	20.25	19.75	10.0
20.00	M16	2.00	30.00	20.000	19.967	22.40	19.62	14.00	13.20	2.50	4.50	1.25	22.25	21.75	10.0
22.00	M18	2.50	33.00	22.000	21.967	24.40	21.62	16.00	14.54	2.65	5.60	1.45	25.25	24.75	12.0
24.00	M20	2.50	36.00	24.000	23.967	26.40	23.62	16.00	16.54	2.65	5.60	1.45	27.25	26.75	12.0

ALL DIMENSIONS IN MILLIMETRES.

MECHANICAL PROPERTIES

Material Unbrako High Grade Alloy Steel

Heat Treatment Rc 39-43 Shear Strength 730 N/mm²

NOTES:

1.	COI	NCENTRICITY		SQUARE	NESS
Nominal	Head to Body	Socket to Body	Body to Thread	Head to Body	Body to Thread
6.0	0.15	0.26	0.10	0.15	0.15
8.0	0.16	0.26	0.10	0.18	0.15
10.0	0.20	0.30	0.10	0.24	0.15
12.0	0.24	0.36	0.10	0.27	0.15
16.0	0.32	0.54	0.10	0.34	0.20
18.0	0.36	0.54	0.10	0.38	0.20
20.0	0.40	0.66	0.10	0.42	0.20
22.0	0.44	0.66	0.10	0.45	0.25
24.0	0.48	0.66	0.10	0.50	0.30

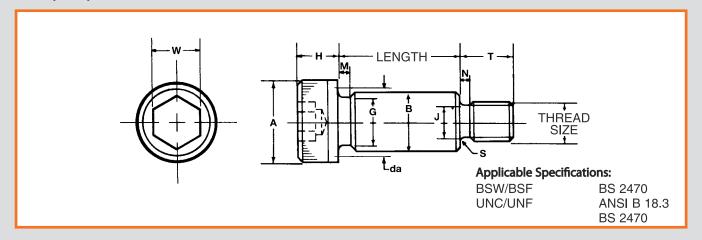
2. Straightness

The maximum deviation of the axis of the shoulder.

					SHOU	LDER	LENGT	Ή							
B DIA	10	10 20 30 40 50 60 70 80 90 100 110 120													
≤ 8	0.07	.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25 0.27 0.29													
> 8	0.075	.075 0.10 0.125 0.15 0.175 0.20 0.225 0.25 0.275 0.30 0.325 0.35													

3. Squareness, parallelism, concentricity and bow of body to thread pitch dia shall be within 0.05 TIR per centimetre of shoulder length with a maximum 0.70 when seated against the shoulder in a threaded bushing and checked on the shoulder dia at a distance of 5.0 from the bearing face of the head.

4. Thread Class: 4g 6g


5. da - Transition diameter.

6. Working Temperature: -50°C +300°C **7. Length Tolerance:** +0.25mm -0

N.B. Because of their configuration, these screws cannot be tensile tested.

Unbrako

SOCKET HEAD SHOULDER SCREWS - UNC, UNF, BSW and BSF Threads

DIMENSIONS - BSW and BSF Threads

		Threa Per Ir			В	3				J Ma	ax.				1	г	
Body Size	Thread Size	BSW	BSF	A Max.	Max.	Min.	da Max.	G Max.	H Max.	BSW	BSF	M Max.	N Max.	S Max.	Max.	Min.	W Nom.
1/4	3/ ₁₆	24	32	.375	.2480	.2470	.2760	.235	.188	.129	.138	.093	.083	.023	.375	.355	1/8
5/ ₁₆	1/4	20	26	.437	.3105	.3095	.3445	.297	.219	.178	.190	.093	.100	.028	.437	.417	5/ ₃₂
3/ ₈	5/ ₁₆	18	22	.562	.3730	.3720	.4130	.360	.250	.231	.243	.093	.111	.031	.500	.480	3/ ₁₆
1/2	3/8	16	20	.750	.4980	.4970	.5500	.485	.313	.285	.299	.093	.125	.035	.625	.595	1/4
5/ ₈	1/2	12	16	.875	.6230	.6220	.6870	.611	.375	.390	.406	.093	.152	.042	.750	.720	5/ ₁₆
3/4	5/ ₈	11	14	1.000	.7480	.7470	.8260	.736	.500	.497	.518	.093	.182	.051	.875	.845	3/8
7/8	3/4	10	12	1.125	.8730	.8720	.9650	.860	.625	.609	.627	.125	.200	.055	1.000	.970	1/2
1	3/4	10	12	1.312	.9980	.9970	1.0980	.986	.625	.609	.627	.125	.200	.055	1.000	.970	1/2
11/4	7/ ₈	9	11	1.750	1.2480	1.2470	1.3680	1.236	.750	.716	.743	.125	.222	.062	1.125	1.095	5/ ₈
ALL DIMENSIONS IN INCHES.																	

DIMENSIONS - UNC and UNF Threads

		Threa Per Ir			E	3				J N	lax.				1	г	
Body Size	Thread Size	UNC	UNF	A Max.	Max.	Min.	da Max.	G Max.	Н Мах.	UNC	UNF	M Max.	N Max.	S Max.	Max.	Min.	W Max.
1/4	N°10	24	32	.375	.2480	.2470	.2760	.235	.188	.129	.138	.093	.083	.023	.375	.355	1/8
5/16	1/4	20	28	.437	.3105	.3095	.3445	.297	.219	.178	.190	.093	.100	.028	.437	.417	5/ ₃₂
3/8	5/ ₁₆	18	24	.562	.3730	.3720	.4130	.360	.250	.231	.243	.093	.111	.031	.500	.480	3/ ₁₆
1/2	3/8	16	24	.750	.4980	.4970	.5500	.485	.313	.285	.299	.093	.125	.035	.625	.595	1/4
5/8	1/2	13	20	.875	.6230	.6220	.6870	.611	.375	.390	.406	.093	.152	.042	.750	.720	5/ ₁₆
3/4	5/ ₈	11	18	1.000	.7480	.7470	.8260	.736	.500	.497	.518	.093	.182	.051	.875	.845	3/ ₈
7/8	3/4	10	16	1.125	.8730	.8720	.9650	.860	.625	.609	.627	.125	.200	.055	1.000	.970	1/2
1	3/4	10	16	1.312	.9980	.9970	1.0980	.986	.625	.609	.627	.125	.200	.055	1.000	.970	1/2
11/4	7/8	9	14	1.750	1.2480	1.2470	1.3680	1.236	.750	.716	.743	.125	.222	.062	1.125	1.095	5/ ₈

MECHANICAL PROPERTIES

Material Unbrako High Grade

Heat Treatment Rc 39-44
Shear Strength 108,000 lbf/in²

N.B. Because of their configuration, these screws cannot be tensile tested.

ALL DIMENSIONS IN INCHES. **NOTES:**

1. Length ±0.005

- 2. Concentricity Body to head O.D. within 0.002 TIR when checked in a 'V' block. Body to thread P.D. within 0.004 TIR when checked at a distance of 0.188 from the shoulder at the threaded end. Squareness, concentricity, parallelism and bow of body to thread P.D. shall be within 0.005 TIR per inch of body length with a maximum of 0.020 when seated against the shoulder in a threaded bush and checked on the body at a distance of 2M from the underside of the head.
- **3. Squareness** The bearing surface of the head shall be perpendicular to the axis of the body within a maximum deviation of 2°.
- **4. Thread Class:**BSW and BSF Medium UNC and UNF 3A
- **5. da** Transition diameter.

6. Working Temperature: -50°C +300°C